Chapter 6: Problem 20
Why is it a good idea to rinse your thermos bottle with hot water before filling it with hot coffee?
Chapter 6: Problem 20
Why is it a good idea to rinse your thermos bottle with hot water before filling it with hot coffee?
All the tools & learning materials you need for study success - in one app.
Get started for freeA system undergoes a process consisting of the following two steps: Step 1: The system absorbs \(72 \mathrm{~J}\) of heat while \(35 \mathrm{~J}\) of work is done on it. Step 2: The system absorbs \(35 \mathrm{~J}\) of heat while performing \(72 \mathrm{~J}\) of work. Calculate \(\Delta E\) for the overall process.
At \(298 \mathrm{~K}\), the standard enthalpies of formation for \(\mathrm{C}_{2} \mathrm{H}_{2}(g)\) and \(\mathrm{C}_{6} \mathrm{H}_{6}(l)\) are \(227 \mathrm{~kJ} / \mathrm{mol}\) and \(49 \mathrm{~kJ} / \mathrm{mol}\), respectively. a. Calculate \(\Delta H^{\circ}\) for $$ \mathrm{C}_{6} \mathrm{H}_{6}(l) \longrightarrow 3 \mathrm{C}_{2} \mathrm{H}_{2}(g) $$ b. Both acetylene \(\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\) and benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\) can be used as fuels. Which compound would liberate more energy per gram when combusted in air?
A gas absorbs \(45 \mathrm{~kJ}\) of heat and does \(29 \mathrm{~kJ}\) of work. Calculate \(\Delta E\).
The enthalpy change for the reaction $$ \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ is \(-891 \mathrm{~kJ}\) for the reaction as written. a. What quantity of heat is released for each mole of water formed? b. What quantity of heat is released for each mole of oxygen reacted?
In a coffee-cup calorimeter, \(100.0 \mathrm{~mL}\) of \(1.0 \mathrm{M} \mathrm{NaOH}\) and \(100.0 \mathrm{~mL}\) of \(1.0 \mathrm{M} \mathrm{HCl}\) are mixed. Both solutions were originally at \(24.6^{\circ} \mathrm{C}\). After the reaction, the final temperature is \(31.3^{\circ} \mathrm{C}\). Assuming that all the solutions have a density of \(1.0 \mathrm{~g} / \mathrm{cm}^{3}\) and a specific heat capacity of \(4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\), calculate the enthalpy change for the neutralization of \(\mathrm{HCl}\) by \(\mathrm{NaOH}\). Assume that no heat is lost to the surroundings or to the calorimeter.
What do you think about this solution?
We value your feedback to improve our textbook solutions.