Chapter 6: Problem 19
Standard enthalpies of formation are relative values. What are \(\Delta H_{\mathrm{f}}^{\circ}\) values relative to?
Chapter 6: Problem 19
Standard enthalpies of formation are relative values. What are \(\Delta H_{\mathrm{f}}^{\circ}\) values relative to?
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven the following data $$ \begin{aligned} \mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(g) & \longrightarrow 4 \mathrm{PCl}_{3}(g) & & \Delta H=-1225.6 \mathrm{~kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g) & \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) & & \Delta H=-2967.3 \mathrm{~kJ} \\ \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) & \longrightarrow \mathrm{PCl}_{5}(g) & & \Delta H=-84.2 \mathrm{~kJ} \\ \mathrm{PCl}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) & \mathrm{Cl}_{3} \mathrm{PO}(g) & & \Delta H=-285.7 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{10}(s)+6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) $$
Consider the following cyclic process carried out in two steps on a gas: Step 1: \(45 \mathrm{~J}\) of heat is added to the gas, and \(10 . \mathrm{J}\) of expansion work is performed. Step 2: \(60 . \mathrm{J}\) of heat is removed from the gas as the gas is compressed back to the initial state. Calculate the work for the gas compression in step \(2 .\)
The enthalpy change for the reaction $$ \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ is \(-891 \mathrm{~kJ}\) for the reaction as written. a. What quantity of heat is released for each mole of water formed? b. What quantity of heat is released for each mole of oxygen reacted?
Nitromethane, \(\mathrm{CH}_{3} \mathrm{NO}_{2}\), can be used as a fuel. When the liquid is burned, the (unbalanced) reaction is mainly $$ \mathrm{CH}_{3} \mathrm{NO}_{2}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) $$ a. The standard enthalpy change of reaction \(\left(\Delta H_{\mathrm{rxn}}^{\circ}\right)\) for the balanced reaction (with lowest whole- number coefficients) is \(-1288.5 \mathrm{~kJ} .\) Calculate the \(\Delta H_{\mathrm{f}}^{\circ}\) for nitromethane. b. A \(15.0\) - \(\mathrm{L}\) flask containing a sample of nitromethane is filled with \(\mathrm{O}_{2}\) and the flask is heated to \(100 .^{\circ} \mathrm{C}\). At this temperature, and after the reaction is complete, the total pressure of all the gases inside the flask is 950 . torr. If the mole fraction of nitrogen ( \(\chi_{\text {nitrogen }}\) ) is \(0.134\) after the reaction is complete, what mass of nitrogen was produced?
The standard enthalpy of combustion of ethene gas, \(\mathrm{C}_{2} \mathrm{H}_{4}(g)\), is \(-1411.1 \mathrm{~kJ} / \mathrm{mol}\) at \(298 \mathrm{~K}\). Given the following enthalpies of formation, calculate \(\Delta H_{\mathrm{f}}^{\circ}\) for \(\mathrm{C}_{2} \mathrm{H}_{4}(g)\). $$ \begin{array}{ll} \mathrm{CO}_{2}(g) & -393.5 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}_{2} \mathrm{O}(l) & -285.8 \mathrm{~kJ} / \mathrm{mol} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.