Chapter 6: Problem 18
The enthalpy change for a reaction is a state function and it is an extensive property. Explain.
Chapter 6: Problem 18
The enthalpy change for a reaction is a state function and it is an extensive property. Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe enthalpy of combustion of \(\mathrm{CH}_{4}(\mathrm{~g})\) when \(\mathrm{H}_{2} \mathrm{O}(l)\) is formed is \(-891 \mathrm{~kJ} / \mathrm{mol}\) and the enthalpy of combustion of \(\mathrm{CH}_{4}(\mathrm{~g})\) when \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) is formed is \(-803 \mathrm{~kJ} / \mathrm{mol} .\) Use these data and Hess's law to determine the enthalpy of vaporization for water.
Given the following data $$ \begin{aligned} \mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(g) & \longrightarrow 4 \mathrm{PCl}_{3}(g) & & \Delta H=-1225.6 \mathrm{~kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g) & \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) & & \Delta H=-2967.3 \mathrm{~kJ} \\ \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) & \longrightarrow \mathrm{PCl}_{5}(g) & & \Delta H=-84.2 \mathrm{~kJ} \\ \mathrm{PCl}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) & \mathrm{Cl}_{3} \mathrm{PO}(g) & & \Delta H=-285.7 \mathrm{~kJ} \end{aligned} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{10}(s)+6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) $$
Water gas is produced from the reaction of steam with coal: $$ \mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}(g) $$ Assuming that coal is pure graphite, calculate \(\Delta H^{\circ}\) for this reaction.
Calculate the internal energy change for each of the following. a. One hundred (100.) joules of work is required to compress a gas. At the same time, the gas releases \(23 \mathrm{~J}\) of heat. b. A piston is compressed from a volume of \(8.30 \mathrm{~L}\) to \(2.80 \mathrm{~L}\) against a constant pressure of \(1.90 \mathrm{~atm} .\) In the process, there is a heat gain by the system of \(350 . \mathrm{J}\). c. A piston expands against \(1.00 \mathrm{~atm}\) of pressure from \(11.2 \mathrm{~L}\) to \(29.1 \mathrm{~L}\). In the process, \(1037 \mathrm{~J}\) of heat is absorbed.
A sample of nickel is heated to \(99.8^{\circ} \mathrm{C}\) and placed in a coffeecup calorimeter containing \(150.0 \mathrm{~g}\) water at \(23.5^{\circ} \mathrm{C}\). After the metal cools, the final temperature of metal and water mixture is \(25.0^{\circ} \mathrm{C}\). If the specific heat capacity of nickel is \(0.444 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\), what mass of nickel was originally heated? Assume no heat loss to the surroundings.
What do you think about this solution?
We value your feedback to improve our textbook solutions.