Chapter 6: Problem 127
A cubic piece of uranium metal (specific heat capacity \(=0.117\) \(\mathrm{J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\) ) at \(200.0^{\circ} \mathrm{C}\) is dropped into \(1.00 \mathrm{~L}\) deuterium oxide ("heavy water," specific heat capacity \(=4.211 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}\) ) at \(25.5^{\circ} \mathrm{C}\). The final temperature of the uranium and deuterium oxide mixture is \(28.5^{\circ} \mathrm{C}\). Given the densities of uranium \(\left(19.05 \mathrm{~g} / \mathrm{cm}^{3}\right)\) and deuterium oxide (1.11 \(\mathrm{g} / \mathrm{mL}\) ), what is the edge length of the cube of uranium?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.