Chapter 6: Problem 11
Consider an airplane trip from Chicago, Illinois, to Denver, Colorado. List some path-dependent functions and some state functions for the plane trip.
Chapter 6: Problem 11
Consider an airplane trip from Chicago, Illinois, to Denver, Colorado. List some path-dependent functions and some state functions for the plane trip.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe enthalpy of combustion of solid carbon to form carbon dioxide is \(-393.7 \mathrm{~kJ} / \mathrm{mol}\) carbon, and the enthalpy of combustion of carbon monoxide to form carbon dioxide is \(-283.3 \mathrm{~kJ} / \mathrm{mol}\) CO. Use these data to calculate \(\Delta H\) for the reaction $$ 2 \mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}(g) $$
For the following reactions at constant pressure, predict if \(\Delta H>\) \(\Delta E, \Delta H<\Delta E\), or \(\Delta H=\Delta E\) a. \(2 \mathrm{HF}(g) \longrightarrow \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g)\) b. \(\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\) c. \(4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)\)
The bombardier beetle uses an explosive discharge as a defensive measure. The chemical reaction involved is the oxidation of hydroquinone by hydrogen peroxide to produce quinone and water: $$ \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ Calculate \(\Delta H\) for this reaction from the following data: \(\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(a q) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)+\mathrm{H}_{2}(g)\) $$ \begin{aligned} \Delta H &=+177.4 \mathrm{~kJ} \\ \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(a q) & \Delta H=-191.2 \mathrm{~kJ} \\ \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-241.8 \mathrm{~kJ} \\ \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta H=-43.8 \mathrm{~kJ} \end{aligned} $$
The Ostwald process for the commercial production of nitric acid from ammonia and oxygen involves the following steps: $$ \begin{aligned} 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) & \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \\ 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{NO}_{2}(g) \\ 3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) & \longrightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g) \end{aligned} $$ a. Use the values of \(\Delta H_{\mathrm{f}}^{\circ}\) in Appendix 4 to calculate the value of \(\Delta H^{\circ}\) for each of the preceding reactions. b. Write the overall equation for the production of nitric acid by the Ostwald process by combining the preceding equations. (Water is also a product.) Is the overall reaction exothermic or endothermic?
The enthalpy change for a reaction is a state function and it is an extensive property. Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.