Chapter 5: Problem 50
A 5.0-L flask contains \(0.60 \mathrm{~g} \mathrm{O}_{2}\) at a temperature of \(22^{\circ} \mathrm{C}\). What is the pressure (in atm) inside the flask?
Chapter 5: Problem 50
A 5.0-L flask contains \(0.60 \mathrm{~g} \mathrm{O}_{2}\) at a temperature of \(22^{\circ} \mathrm{C}\). What is the pressure (in atm) inside the flask?
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(2.747-\mathrm{g}\) sample of manganese metal is reacted with excess \(\mathrm{HCl}\) gas to produce \(3.22 \mathrm{~L} \mathrm{H}_{2}(g)\) at \(373 \mathrm{~K}\) and \(0.951 \mathrm{~atm}\) and a manganese chloride compound \(\left(\mathrm{MnCl}_{x}\right)\). What is the formula of the manganese chloride compound produced in the reaction?
The partial pressure of \(\mathrm{CH}_{4}(g)\) is \(0.175\) atm and that of \(\mathrm{O}_{2}(g)\) is \(0.250\) atm in a mixture of the two gases. a. What is the mole fraction of each gas in the mixture? b. If the mixture occupies a volume of \(10.5 \mathrm{~L}\) at \(65^{\circ} \mathrm{C}\), calculate the total number of moles of gas in the mixture. c. Calculate the number of grams of each gas in the mixture.
Metallic molybdenum can be produced from the mineral molybdenite, \(\mathrm{MoS}_{2}\). The mineral is first oxidized in air to molybdenum trioxide and sulfur dioxide. Molybdenum trioxide is then reduced to metallic molybdenum using hydrogen gas. The balanced equations are $$ \begin{aligned} \mathrm{MoS}_{2}(s)+\frac{2}{2} \mathrm{O}_{2}(g) & \longrightarrow \mathrm{MoO}_{3}(s)+2 \mathrm{SO}_{2}(g) \\ \mathrm{MoO}_{3}(s)+3 \mathrm{H}_{2}(g) & \longrightarrow \mathrm{Mo}(s)+3 \mathrm{H}_{2} \mathrm{O}(l) \end{aligned} $$ Calculate the volumes of air and hydrogen gas at \(17^{\circ} \mathrm{C}\) and \(1.00\) atm that are necessary to produce \(1.00 \times 10^{3} \mathrm{~kg}\) pure molybdenum from \(\mathrm{MoS}_{2}\). Assume air contains \(21 \%\) oxygen by volume and assume \(100 \%\) yield for each reaction.
A 20.0-L nickel container was charged with \(0.500\) atm of xenon gas and \(1.50\) atm of fluorine gas at \(400 .{ }^{\circ} \mathrm{C}\). The xenon and fluorine react to form xenon tetrafluoride. What mass of xenon tetrafluoride can be produced assuming \(100 \%\) yield?
Hydrogen azide, \(\mathrm{HN}_{3}\), decomposes on heating by the following unbalanced reaction: $$ \mathrm{HN}_{3}(g) \longrightarrow \mathrm{N}_{2}(g)+\mathrm{H}_{2}(g) $$ If \(3.0 \mathrm{~atm}\) of pure \(\mathrm{HN}_{3}(\mathrm{~g})\) is decomposed initially, what is the final total pressure in the reaction container? What are the partial pressures of nitrogen and hydrogen gas? Assume the volume and temperature of the reaction container are constant.
What do you think about this solution?
We value your feedback to improve our textbook solutions.