Chapter 5: Problem 134
One of the chemical controversies of the nineteenth century concerned the element beryllium (Be). Berzelius originally claimed that beryllium was a trivalent element (forming \(\mathrm{Be}^{3+}\) ions) and that it gave an oxide with the formula \(\mathrm{Be}_{2} \mathrm{O}_{3} .\) This resulted in a calculated atomic mass of \(13.5\) for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (forming \(\mathrm{Be}^{2+}\) ions) and that it gave an oxide with the formula BeO. This assumption gives an atomic mass of \(9.0 .\) In 1894 , A. Combes (Comptes Rendus 1894, p. 1221\()\) reacted beryllium with the anion \(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}^{-}\) and measured the density of the gaseous product. Combes's data for two different experiments are as follows: If beryllium is a divalent metal, the molecular formula of the product will be \(\mathrm{Be}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} ;\) if it is trivalent, the formula will be \(\mathrm{Be}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{3}\). Show how Combes's data help to confirm that beryllium is a divalent metal.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.