Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the reaction between oxygen \(\left(\mathrm{O}_{2}\right)\) gas and magnesium metal to form magnesium oxide. Using oxidation states, how many electrons would each oxygen atom gain, and how many electrons would each magnesium atom lose? How many magnesium atoms are needed to react with one oxygen molecule? Write a balanced equation for this reaction.

Short Answer

Expert verified
Each oxygen atom gains 2 electrons, and each magnesium atom loses 2 electrons. Two magnesium atoms are needed to react with one oxygen molecule. The balanced chemical equation for the reaction is: \[2 \textrm{Mg} (s) + \textrm{O}_{2} (g) \rightarrow 2 \textrm{MgO} (s)\]

Step by step solution

01

Identify the oxidation states of the elements involved

Oxygen gas is diatomic, meaning it's a molecule consisting of two oxygen atoms with the formula O₂. In its elemental form, oxygen has an oxidation state of 0. Magnesium in its elemental form, as a metal, also has an oxidation state of 0. In magnesium oxide (MgO), the oxidation state of magnesium is +2, while oxygen has an oxidation state of -2.
02

Determine the number of electrons gained and lost during the reaction

Since the oxidation state of oxygen changes from 0 to -2, each oxygen atom gains 2 electrons during the reaction. The oxidation state of magnesium changes from 0 to +2, meaning each magnesium atom loses 2 electrons during the reaction.
03

Find out how many magnesium atoms are needed to react with one oxygen molecule

One oxygen molecule (O₂) contains two oxygen atoms. Each oxygen atom gains 2 electrons, so the oxygen molecule gains a total of 4 electrons. Since each magnesium atom loses 2 electrons, we would need 2 magnesium atoms to provide the 4 electrons needed for the oxygen molecule to gain. Therefore, two magnesium atoms are needed to react with one oxygen molecule.
04

Write a balanced equation for the reaction

The balanced chemical equation for the reaction between magnesium and oxygen is: \[2 \textrm{Mg} (s) + \textrm{O}_{2} (g) \rightarrow 2 \textrm{MgO} (s)\] This equation shows that two moles of magnesium (2 Mg) react with one mole of oxygen gas (O₂) to produce two moles of magnesium oxide (2 MgO). The equation is balanced, as there are equal numbers of magnesium and oxygen atoms on both sides of the equation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Acetylsalicylic acid is the active ingredient in aspirin. It took \(35.17 \mathrm{~mL}\) of \(0.5065 \mathrm{M}\) sodium hydroxide to react completely with \(3.210 \mathrm{~g}\) of acetylsalicylic acid. Acetylsalicylic acid has one acidic hydrogen. What is the molar mass of acetylsalicylic acid?

You are given a solid that is a mixture of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and \(\mathrm{K}_{2} \overline{\mathrm{SO}}_{4}\). A \(0.205-\mathrm{g}\) sample of the mixture is dissolved in water. An excess of an aqueous solution of \(\mathrm{BaCl}_{2}\) is added. The \(\mathrm{BaSO}_{4}\) that is formed is filtered, dried, and weighed. Its mass is \(0.298 \mathrm{~g}\). What mass of \(\mathrm{SO}_{4}{ }^{2-}\) ion is in the sample? What is the mass percent of \(\mathrm{SO}_{4}{ }^{2-}\) ion in the sample? What are the percent compositions by mass of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and \(\mathrm{K}_{2} \mathrm{SO}_{4}\) in the sample?

Saccharin \(\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}\right)\) is sometimes dispensed in tablet form. Ten tablets with a total mass of \(0.5894 \mathrm{~g}\) were dissolved in water. The saccharin was oxidized to convert all the sulfur to sulfate ion, which was precipitated by adding an excess of barium chloride solution. The mass of \(\mathrm{BaSO}_{4}\) obtained was \(0.5032 \mathrm{~g}\). What is the average mass of saccharin per tablet? What is the average mass percent of saccharin in the tablets?

Specify which of the following are oxidation-reduction reactions, and identify the oxidizing agent, the reducing agent, the substance being oxidized, and the substance being reduced. a. \(\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow 2 \mathrm{Ag}(s)+\mathrm{Cu}^{2+}(a q)\) b. \(\mathrm{HCl}(g)+\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(s)\) c. \(\mathrm{SiCl}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 4 \mathrm{HCl}(a q)+\mathrm{SiO}_{2}(s)\) d. \(\mathrm{SiCl}_{4}(l)+2 \mathrm{Mg}(s) \rightarrow 2 \mathrm{MgCl}_{2}(s)+\operatorname{Si}(s)\) e. \(\mathrm{Al}(\mathrm{OH})_{4}^{-}(a q) \rightarrow \mathrm{AlO}_{2}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)\)

Assign the oxidation state for nitrogen in each of the following. a. \(\mathrm{Li}_{3} \mathrm{~N} \quad\) f. \(\mathrm{NO}_{2}\) b. \(\mathrm{NH}_{3} \quad\) g. \(\mathrm{NO}_{2}^{-}\) c. \(\mathrm{N}_{2} \mathrm{H}_{4} \quad\) h. \(\mathrm{NO}_{3}\) d. NO i. \(\mathrm{N}_{2}\) e. \(\mathrm{N}_{3} \mathrm{O}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free