Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A compound that contains only carbon, hydrogen, and oxygen is \(48.64 \% \mathrm{C}\) and \(8.16 \% \mathrm{H}\) by mass. What is the empirical formula of this substance?

Short Answer

Expert verified
The empirical formula for the given compound, containing only carbon, hydrogen, and oxygen with 48.64% C and 8.16% H by mass, is C₃H₆O₂.

Step by step solution

01

Calculate the percentage of oxygen by mass

From the given information, we know the percentage of carbon and hydrogen. The compound contains only carbon, hydrogen, and oxygen, so we can calculate the percentage of oxygen by subtracting the percentages of carbon and hydrogen from 100%: Percentage of oxygen = 100% - (48.64% + 8.16%) = 100% - 56.8% = 43.2% Now, we have the following information: Carbon: 48.64% Hydrogen: 8.16% Oxygen: 43.2%
02

Convert percentages to grams

Assume that we have a 100 gram sample of the compound. Then the mass of each element in the sample is: Carbon: 48.64 g Hydrogen: 8.16 g Oxygen: 43.2 g
03

Convert grams to moles

To find the mole ratio, we first need to convert the mass of each element to moles. We can do this using the molar mass of each element: Moles of Carbon = \( \frac{48.64 g}{12.01g/mol}\) = 4.05 mol Moles of Hydrogen = \( \frac{8.16 g}{1.01g/mol}\)= 8.08 mol Moles of Oxygen = \( \frac{43.2 g}{16.00g/mol}\) = 2.7 mol
04

Find the simplest whole number ratio

To find the simplest whole number ratio between the moles of the elements, divide all values by the smallest number of moles: Divide all values by 2.7: Carbon: \( \frac{4.05}{2.7}\) ≈ 1.5 Hydrogen: \( \frac{8.08}{2.7}\) ≈ 3 Oxygen: \( \frac{2.7}{2.7}\) = 1 We see that the ratio for carbon is not a whole number (1.5). To convert it into a whole number, multiply all ratios by 2: Carbon: 1.5 × 2 = 3 Hydrogen: 3 × 2 = 6 Oxygen: 1 × 2 = 2
05

Write the empirical formula

Now that we have the whole number ratios for each element, we can write the empirical formula for the compound: C₃H₆O₂ The empirical formula for the given compound is C₃H₆O₂.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An ionic compound \(\mathrm{MX}_{3}\) is prepared according to the following unbalanced chemical equation. $$ \mathrm{M}+\mathrm{X}_{2} \longrightarrow \mathrm{MX}_{3} $$ A \(0.105-g\) sample of \(X_{2}\) contains \(8.92 \times 10^{20}\) molecules. The compound \(\mathrm{MX}_{3}\) consists of \(54.47 \% \mathrm{X}\) by mass. What are the identities of \(\mathrm{M}\) and \(\mathrm{X}\), and what is the correct name for \(\mathrm{MX}_{3}\) ? Starting with \(1.00 \mathrm{~g}\) each of \(\mathrm{M}\) and \(\mathrm{X}_{2}\), what mass of \(\mathrm{MX}_{3}\) can be prepared?

An iron ore sample contains \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) plus other impurities. A 752 g sample of impure iron ore is heated with excess carbon, producing \(453 \mathrm{~g}\) of pure iron by the following reaction: $$ \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{C}(s) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}(\mathrm{g}) $$ What is the mass percent of \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) in the impure iron ore sample? Assume that \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) is the only source of iron and that the reaction is \(100 \%\) efficient.

A sample of a hydrocarbon (a compound consisting of only carbon and hydrogen) contains \(2.59 \times 10^{2.3}\) atoms of hydrogen and is \(17.3 \%\) hydrogen by mass. If the molar mass of the hydrocarbon is between 55 and \(65 \mathrm{~g} / \mathrm{mol}\), what amount (moles) of compound is present, and what is the mass of the sample?

A \(0.4230-\mathrm{g}\) sample of impure sodium nitrate was heated, converting all the sodium nitrate to \(0.2864 \mathrm{~g}\) of sodium nitrite and oxygen gas. Determine the percent of sodium nitrate in the original sample.

Balance each of the following chemical equations. a. \(\mathrm{KO}_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{KOH}(a q)+\mathrm{O}_{2}(g)+\mathrm{H}_{2} \mathrm{O}_{2}(a q)\) b. \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\mathrm{HNO}_{3}(a q) \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\) c. \(\mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) d. \(\mathrm{PCl}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{HCl}(g)\) e. \(\mathrm{CaO}(s)+\mathrm{C}(s) \rightarrow \mathrm{CaC}_{2}(s)+\mathrm{CO}_{2}(g)\) f. \(\operatorname{MoS}_{2}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{MoO}_{3}(s)+\mathrm{SO}_{2}(g)\) g. \(\mathrm{FeCO}_{3}(s)+\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightarrow \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}(a q)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free