Chapter 3: Problem 30
What does it mean to say a reactant is present "in excess" in a process? Can the limiting reactant be present in excess? Does the presence of an excess of a reactant affect the mass of products expected for a reaction?
Chapter 3: Problem 30
What does it mean to say a reactant is present "in excess" in a process? Can the limiting reactant be present in excess? Does the presence of an excess of a reactant affect the mass of products expected for a reaction?
All the tools & learning materials you need for study success - in one app.
Get started for freeMethane \(\left(\mathrm{CH}_{4}\right)\) is the main component of marsh gas. Heating methane in the presence of sulfur produces carbon disulfide and hydrogen sulfide as the only products. a. Write the balanced chemical equation for the reaction of methane and sulfur. b. Calculate the theoretical yield of carbon disulfide when \(120 . \mathrm{g}\) of methane is reacted with an equal mass of sulfur.
Freon- \(12\left(\mathrm{CCl}_{2} \mathrm{~F}_{2}\right)\) is used as a refrigerant in air conditioners and as a propellant in aerosol cans. Calculate the number of molecules of Freon-12 in \(5.56 \mathrm{mg}\) of Freon-12. What is the mass of chlorine in \(5.56 \mathrm{mg}\) of Freon-12?
A sample of urea contains \(1.121 \mathrm{~g} \mathrm{~N}, 0.161 \mathrm{~g} \mathrm{H}, 0.480 \mathrm{~g} \mathrm{C}\), and \(0.640 \mathrm{~g} \mathrm{O} .\) What is the empirical formula of urea?
A compound contains \(47.08 \%\) carbon, \(6.59 \%\) hydrogen, and \(46.33 \%\) chlorine by mass; the molar mass of the compound is \(153 \mathrm{~g} / \mathrm{mol} .\) What are the empirical and molecular formulas of the compound?
The space shuttle environmental control system handles excess \(\mathrm{CO}_{2}\) (which the astronauts breathe out; it is \(4.0 \%\) by mass of exhaled air) by reacting it with lithium hydroxide, LiOH, pellets to form lithium carbonate, \(\mathrm{Li}_{2} \mathrm{CO}_{3}\), and water. If there are 7 astronauts on board the shuttle, and each exhales \(20 . \mathrm{L}\) of air per minute, how long could clean air be generated if there were \(25,000 \mathrm{~g}\) of LiOH pellets available for each shuttle mission? Assume the density of air is \(0.0010 \mathrm{~g} / \mathrm{mL}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.