Chapter 3: Problem 24
Avogadro's number, molar mass, and the chemical formula of a compound are three useful conversion factors. What unit conversions can be accomplished using these conversion factors?
Chapter 3: Problem 24
Avogadro's number, molar mass, and the chemical formula of a compound are three useful conversion factors. What unit conversions can be accomplished using these conversion factors?
All the tools & learning materials you need for study success - in one app.
Get started for freeMethane \(\left(\mathrm{CH}_{4}\right)\) is the main component of marsh gas. Heating methane in the presence of sulfur produces carbon disulfide and hydrogen sulfide as the only products. a. Write the balanced chemical equation for the reaction of methane and sulfur. b. Calculate the theoretical yield of carbon disulfide when \(120 . \mathrm{g}\) of methane is reacted with an equal mass of sulfur.
Several important compounds contain only nitrogen and oxygen. Place the following compounds in order of increasing mass percent of nitrogen. a. NO, a gas formed by the reaction of \(\mathrm{N}_{2}\) with \(\mathrm{O}_{2}\) in internal combustion engines b. \(\mathrm{NO}_{2}\), a brown gas mainly responsible for the brownish color of photochemical smog c. \(\mathrm{N}_{2} \mathrm{O}_{4}\), a colorless liquid used as fuel in space shuttles d. \(\mathrm{N}_{2} \mathrm{O}\), a colorless gas sometimes used as an anesthetic by dentists (known as laughing gas)
The most common form of nylon (nylon-6) is \(63.68 \%\) carbon. \(12.38 \%\) nitrogen, \(9.80 \%\) hydrogen, and \(14.14 \%\) oxygen. Calculate the empirical formula for nylon-6.
Many cereals are made with high moisture content so that the cereal can be formed into various shapes before it is dried. A cereal product containing \(58 \% \mathrm{H}_{2} \mathrm{O}\) by mass is produced at the rate of \(1000 . \mathrm{kg} / \mathrm{h} .\) What mass of water must be evaporated per hour if the final product contains only \(20 . \%\) water?
Phosphorus can be prepared from calcium phosphate by the following reaction: \(2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+6 \mathrm{SiO}_{2}(s)+10 \mathrm{C}(s) \longrightarrow\) $$ 6 \mathrm{CaSiO}_{3}(s)+\mathrm{P}_{4}(s)+10 \mathrm{CO}(g) $$ Phosphorite is a mineral that contains \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) plus other nonphosphorus- containing compounds. What is the maximum amount of \(\mathrm{P}_{4}\) that can be produced from \(1.0 \mathrm{~kg}\) of phosphorite if the phorphorite sample is \(75 \% \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) by mass? Assume an excess of the other reactants.
What do you think about this solution?
We value your feedback to improve our textbook solutions.