Chapter 3: Problem 12
Is there a difference between a homogeneous mixture of hydrogen and oxygen in a \(2: 1\) mole ratio and a sample of water vapor? Explain.
Chapter 3: Problem 12
Is there a difference between a homogeneous mixture of hydrogen and oxygen in a \(2: 1\) mole ratio and a sample of water vapor? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe space shuttle environmental control system handles excess \(\mathrm{CO}_{2}\) (which the astronauts breathe out; it is \(4.0 \%\) by mass of exhaled air) by reacting it with lithium hydroxide, LiOH, pellets to form lithium carbonate, \(\mathrm{Li}_{2} \mathrm{CO}_{3}\), and water. If there are 7 astronauts on board the shuttle, and each exhales \(20 . \mathrm{L}\) of air per minute, how long could clean air be generated if there were \(25,000 \mathrm{~g}\) of LiOH pellets available for each shuttle mission? Assume the density of air is \(0.0010 \mathrm{~g} / \mathrm{mL}\).
Aspartame is an artificial sweetener that is 160 times sweeter than sucrose (table sugar) when dissolved in water. It is marketed as Nutra-Sweet. The molecular formula of aspartame is \(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}\) a. Calculate the molar mass of aspartame. b. What amount (moles) of molecules are present in \(10.0 \mathrm{~g}\) aspartame? c. Calculate the mass in grams of \(1.56\) mol aspartame. d. What number of molecules are in \(5.0 \mathrm{mg}\) aspartame? e. What number of atoms of nitrogen are in \(1.2 \mathrm{~g}\) aspartame? f. What is the mass in grams of \(1.0 \times 10^{9}\) molecules of aspartame? g. What is the mass in grams of one molecule of aspartame?
What amount (moles) is represented by each of these samples? a. \(150.0 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}\) b. \(10.0 \mathrm{mg} \mathrm{NO}_{2}\) c. \(1.5 \times 10^{16}\) molecules of \(\mathrm{BF}_{3}\)
Hydrogen peroxide is used as a cleansing agent in the treatment of cuts and abrasions for several reasons. It is an oxidizing agent that can directly kill many microorganisms; it decomposes on contact with blood, releasing elemental oxygen gas (which inhibits the growth of anaerobic microorganisms); and it foams on contact with blood, which provides a cleansing action. In the laboratory, small quantities of hydrogen peroxide can be prepared by the action of an acid on an alkaline earth metal peroxide, such as barium peroxide: $$ \mathrm{BaO}_{2}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{BaCl}_{2}(a q) $$ What mass of hydrogen peroxide should result when \(1.50 \mathrm{~g}\) barium peroxide is treated with \(25.0 \mathrm{~mL}\) hydrochloric acid solution containing \(0.0272 \mathrm{~g} \mathrm{HCl}\) per \(\mathrm{mL}\) ? What mass of which reagent is left unreacted?
Bacterial digestion is an economical method of sewage treatment. The reaction \(5 \mathrm{CO}_{2}(g)+55 \mathrm{NH}_{4}^{+}(a q)+76 \mathrm{O}_{2}(g)\) \(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}(s)+54 \mathrm{NO}_{2}^{-}(a q)+52 \mathrm{H}_{2} \mathrm{O}(l)+109 \mathrm{H}^{+}(a q)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.