Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Coke is an impure form of carbon that is often used in the industrial production of metals from their oxides. If a sample of coke is \(95 \%\) carbon by mass, determine the mass of coke needed to react completely with \(1.0\) ton of copper(II) oxide. $$ 2 \mathrm{CuO}(s)+\mathrm{C}(s) \longrightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}_{2}(g) $$

Short Answer

Expert verified
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 79,424.81 grams.

Step by step solution

01

Convert the mass of copper(II) oxide to moles

First, we need to convert the mass of copper(II) oxide, which is 1.0 ton, to moles. To do this, we use the molar mass of copper(II) oxide, which is the sum of the molar masses of its elements: Cu (63.55 g/mol) and O (16.00 g/mol). The molar mass of CuO is 63.55 + 16.00 = 79.55 g/mol. Now, we can convert the mass of copper(II) oxide to moles: 1 ton = 1000 kg, so we have 1000 kg or 1,000,000 g of copper(II) oxide. Number of moles = Mass/Molar mass Number of moles of CuO = \(\frac{1,000,000}{79.55}\) = 12,568.67 moles
02

Use stoichiometry to find the moles of carbon needed for the reaction

According to the balanced chemical equation, 2 moles of CuO react with 1 mole of C. Hence, we need half the number of moles of carbon to react completely with the moles of CuO. Number of moles of C needed = \(\frac{12,568.67}{2}\) = 6,284.33 moles
03

Convert the moles of carbon to mass

Now, using the molar mass of carbon (12.01 g/mol), we can convert the moles of carbon needed into mass. Mass of carbon needed = Number of moles * Molar mass Mass of carbon needed = 6,284.33 * 12.01 = 75,454.07 g
04

Calculate the mass of coke needed

We know that the coke sample is 95% carbon by mass. To find the mass of coke needed, we can set up a proportion: \(\frac{Mass \ of \ carbon \ needed}{Mass \ of \ coke \ needed}\) = \(\frac{95}{100}\) Cross-multiplying and solving for the mass of coke needed, we get: Mass of coke needed = \(\frac{100 \times 75,454.07}{95}\) = 79,424.81 g Thus, the mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 79,424.81 grams.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Acrylonitrile \(\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\right)\) is the starting material for many synthetic carpets and fabrics. It is produced by the following reaction. \(2 \mathrm{C}_{3} \mathrm{H}_{6}(g)+2 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)\) If \(15.0 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}, 10.0 \mathrm{~g} \mathrm{O}_{2}\), and \(5.00 \mathrm{~g} \mathrm{NH}_{3}\) are reacted, what mass of acrylonitrile can be produced, assuming \(100 \%\) yield?

A binary compound between an unknown element \(\mathrm{E}\) and hydrogen contains \(91.27 \% \mathrm{E}\) and \(8.73 \% \mathrm{H}\) by mass. If the formula of the compound is \(\mathrm{E}_{3} \mathrm{H}_{\mathrm{s}}\), calculate the atomic mass of \(\mathrm{E}\).

You take \(1.00 \mathrm{~g}\) of an aspirin tablet (a compound consisting solely of carbon, hydrogen, and oxygen), burn it in air, and collect \(2.20\) \(\mathrm{g} \mathrm{CO}_{2}\) and \(0.400 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\). You know that the molar mass of aspirin is between 170 and \(190 \mathrm{~g} / \mathrm{mol}\). Reacting 1 mole of salicylic acid with 1 mole of acetic anhydride \(\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)\) gives you 1 mole of aspirin and 1 mole of acetic acid \(\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)\). Use this information to determine the molecular formula of salicylic acid.

From the information below, determine the mass of substance \(C\) that will be formed if \(45.0\) grams of substance \(A\) reacts with \(23.0\) grams of substance \(B\). (Assume that the reaction between \(A\) and \(B\) goes to completion.) a. Substance \(A\) is a gray solid that consists of an alkaline earth metal and carbon ( \(37.5 \%\) by mass). It reacts with substance \(B\) to produce substances \(C\) and \(D .\) Forty million trillion formula units of \(A\) have a mass of \(4.26\) milligrams. b. \(47.9\) grams of substance \(B\) contains \(5.36\) grams of hydrogen and \(42.5\) grams of oxygen. c. When \(10.0\) grams of \(C\) is burned in excess oxygen, \(33.8\) grams of carbon dioxide and \(6.92\) grams of water are produced. \(\mathrm{A}\) mass spectrum of substance \(C\) shows a parent molecular ion with a mass-to-charge ratio of 26 . d. Substance \(D\) is the hydroxide of the metal in substance \(A\).

Hydrogen cyanide is produced industrially from the reaction of gaseous ammonia, oxygen, and methane: $$ 2 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g)+2 \mathrm{CH}_{4}(g) \longrightarrow 2 \mathrm{HCN}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) $$ If \(5.00 \times 10^{3} \mathrm{~kg}\) each of \(\mathrm{NH}_{3}, \mathrm{O}_{2}\), and \(\mathrm{CH}_{4}\) are reacted, what mass of \(\mathrm{HCN}\) and of \(\mathrm{H}_{2} \mathrm{O}\) will be produced, assuming \(100 \%\) yield?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free