Chapter 21: Problem 95
Qualitatively draw the crystal field splitting for a trigonal bipyramidal complex ion. (Let the \(z\) axis be perpendicular to the trigonal plane.)
Chapter 21: Problem 95
Qualitatively draw the crystal field splitting for a trigonal bipyramidal complex ion. (Let the \(z\) axis be perpendicular to the trigonal plane.)
All the tools & learning materials you need for study success - in one app.
Get started for free. Which is more likely to be paramagnetic, \(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}\) or \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\) ? Explain.
The compound cisplatin, \(\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\), has been studied extensively as an antitumor agent. The reaction for the synthesis of cisplatin is: $$\mathrm{K}_{2} \mathrm{PtCl}_{4}(a q)+2 \mathrm{NH}_{3}(a q) \longrightarrow \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(s)+2 \mathrm{KCl}(a q)$$ Write the electron configuration for platinum ion in cisplatin. Most \(d^{8}\) transition metal ions exhibit square planar geometry. With this and the name in mind, draw the structure of cisplatin.
How many bonds could each of the following chelating ligands form with a metal ion? a. acetylacetone (acacH), a common ligand in organometallic catalysts: b. diethylenetriamine, used in a variety of industrial processes: c. salen, a common ligand for chiral organometallic catalysts: d. porphine, often used in supermolecular chemistry as well as catalysis; biologically, porphine is the basis for many different types of porphyrin- containing proteins, including heme proteins:
In the production of printed circuit boards for the electronics industry, a \(0.60-\mathrm{mm}\) layer of copper is laminated onto an insulating plastic board. Next, a circuit pattern made of a chemically resistant polymer is printed on the board. The unwanted copper is removed by chemical etching, and the protective polymer is finally removed by solvents. One etching reaction is \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}(a q)+4 \mathrm{NH}_{3}(a q)+\mathrm{Cu}(s)\) \(\longrightarrow 2\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}(a q)\) a. Is this reaction an oxidation-reduction process? Explain. b. \(A\) plant needs to manufacture 10,000 printed circuit boards, each \(8.0 \times 16.0 \mathrm{~cm}\) in area. An average of \(80 . \%\) of the copper is removed from each board (density of copper \(=8.96\) \(\mathrm{g} / \mathrm{cm}^{3}\) ). What masses of \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}\) and \(\mathrm{NH}_{3}\) are needed to do this? Assume \(100 \%\) yield.
There are three salts that contain complex ions of chromium and have the molecular formula \(\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\). Treating \(0.27 \mathrm{~g}\) of the first salt with a strong dehydrating agent resulted in a mass loss of \(0.036 \mathrm{~g}\). Treating \(270 \mathrm{mg}\) of the second salt with the same dehydrating agent resulted in a mass loss of \(18 \mathrm{mg}\). The third salt did not lose any mass when treated with the same dehydrating agent. Addition of excess aqueous silver nitrate to \(100.0-\mathrm{mL}\) portions of \(0.100 M\) solutions of each salt resulted in the formation of different masses of silver chloride; one solution yielded 1430 \(\mathrm{mg} \mathrm{AgCl} ;\) another, \(2870 \mathrm{mg} \mathrm{AgCl}\); the third, \(4300 \mathrm{mg} \mathrm{AgCl}\). Two of the salts are green and one is violet. Suggest probable structural formulas for these salts, defending your answer on the basis of the preceding observations. State which salt is most likely to be violet. Would a study of the magnetic properties of the salts be helpful in determining the structural formulas? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.