Chapter 21: Problem 78
In the production of printed circuit boards for the electronics industry, a \(0.60-\mathrm{mm}\) layer of copper is laminated onto an insulating plastic board. Next, a circuit pattern made of a chemically resistant polymer is printed on the board. The unwanted copper is removed by chemical etching, and the protective polymer is finally removed by solvents. One etching reaction is \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}(a q)+4 \mathrm{NH}_{3}(a q)+\mathrm{Cu}(s)\) \(\longrightarrow 2\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}(a q)\) a. Is this reaction an oxidation-reduction process? Explain. b. \(A\) plant needs to manufacture 10,000 printed circuit boards, each \(8.0 \times 16.0 \mathrm{~cm}\) in area. An average of \(80 . \%\) of the copper is removed from each board (density of copper \(=8.96\) \(\mathrm{g} / \mathrm{cm}^{3}\) ). What masses of \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}\) and \(\mathrm{NH}_{3}\) are needed to do this? Assume \(100 \%\) yield.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.