Chapter 21: Problem 48
Draw the \(d\) -orbital splitting diagrams for the octahedral complex ions of each of the following. a. \(\mathrm{Zn}^{2+}\) b. \(\mathrm{Co}^{2+}\) (high and low spin) c. \(\mathrm{Ti}^{3+}\)
Chapter 21: Problem 48
Draw the \(d\) -orbital splitting diagrams for the octahedral complex ions of each of the following. a. \(\mathrm{Zn}^{2+}\) b. \(\mathrm{Co}^{2+}\) (high and low spin) c. \(\mathrm{Ti}^{3+}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAlmost all metals in nature are found as ionic compounds in ores instead of being in the pure state. Why? What must be done to a sample of ore to obtain a metal substance that has desirable properties?
A transition metal compound contains a cobalt ion, chloride ions, and water molecules. The \(\mathrm{H}_{2} \mathrm{O}\) molecules are the ligands in the complex ion and the \(\mathrm{Cl}^{-}\) ions are the counterions. \(\mathrm{A}\) \(0.256-\mathrm{g}\) sample of the compound was dissolved in water, and excess silver nitrate was added. The silver chloride was filtered, dried, and weighed, and it had a mass of \(0.308 \mathrm{~g}\). A second sample of \(0.416 \mathrm{~g}\) of the compound was dissolved in water, and an excess of sodium hydroxide was added. The hydroxide salt was filtered and heated in a flame, forming cobalt(III) oxide. The mass of cobalt(III) oxide formed was \(0.145 \mathrm{~g}\). What is the oxidation state of cobalt in the complex ion and what is the formula of the compound?
Write electron configurations for each of the following. a. \(\mathrm{Ti}, \mathrm{Ti}^{2+}, \mathrm{Ti}^{\mathrm{i}+}\) b. \(\operatorname{Re}, \mathrm{Re}^{2+}, \mathrm{Re}^{3+}\) c. \(\mathrm{Ir}, \mathrm{Ir}^{2+}, \mathrm{Ir}^{3+}\)
Draw all geometrical and linkage isomers of \(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\).
Qualitatively draw the crystal field splitting for a trigonal bipyramidal complex ion. (Let the \(z\) axis be perpendicular to the trigonal plane.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.