Chapter 21: Problem 25
What is the lanthanide contraction? How does the lanthanide contraction affect the properties of the \(4 d\) and \(5 d\) transition metals?
Chapter 21: Problem 25
What is the lanthanide contraction? How does the lanthanide contraction affect the properties of the \(4 d\) and \(5 d\) transition metals?
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the data in Appendix 4 for the following. a. Calculate \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) for the reaction $$3 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{CO}_{2}(g)$$ that occurs in a blast furnace. b. Assume that \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are independent of temperature. Calculate \(\Delta G^{\circ}\) at \(800 .{ }^{\circ} \mathrm{C}\) for this reaction.
You isolate a compound with the formula \(\mathrm{PtCl}_{4} \cdot 2 \mathrm{KCl}\). From electrical conductance tests of an aqueous solution of the compound, you find that three ions per formula unit are present, and you also notice that addition of \(\mathrm{AgNO}_{3}\) does not cause a precipitate. Give the formula for this compound that shows the complex ion present. Explain your findings. Name this compound.
A certain first-row transition metal ion forms many different colored solutions. When four coordination compounds of this metal, each having the same coordination number, are dissolved in wa ter, the colors of the solutions are red, yellow, green, and blue Further experiments reveal that two of the complex ions are para magnetic with four unpaired electrons and the other two are dia magnetic. What can be deduced from this information about th four coordination compounds?
Acetylacetone, abbreviated acacH, is a bidentate ligand. It loses a proton and coordinates as acac \(^{-}\), as shown below, where \(\mathrm{M}\) is a transition metal: Which of the following complexes are optically active: cis\(\mathrm{Cr}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\), trans \(-\mathrm{Cr}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\), and \(\mathrm{Cr}(\mathrm{acac})_{3} ?\)
The compound cisplatin, \(\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\), has been studied extensively as an antitumor agent. The reaction for the synthesis of cisplatin is: $$\mathrm{K}_{2} \mathrm{PtCl}_{4}(a q)+2 \mathrm{NH}_{3}(a q) \longrightarrow \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(s)+2 \mathrm{KCl}(a q)$$ Write the electron configuration for platinum ion in cisplatin. Most \(d^{8}\) transition metal ions exhibit square planar geometry. With this and the name in mind, draw the structure of cisplatin.
What do you think about this solution?
We value your feedback to improve our textbook solutions.