Chapter 21: Problem 15
Compounds of \(\mathrm{Sc}^{3+}\) are not colored, but those of \(\mathrm{Ti}^{3+}\) and \(\mathrm{V}^{3+}\) are. Why?
Chapter 21: Problem 15
Compounds of \(\mathrm{Sc}^{3+}\) are not colored, but those of \(\mathrm{Ti}^{3+}\) and \(\mathrm{V}^{3+}\) are. Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeDraw structures of each of the following. a. cis-dichloroethylenediamineplatinum(II) b. trans-dichlorobis(ethylenediamine) cobalt(II) c. cis-tetraamminechloronitrocobalt(III) ion d. trans-tetraamminechloronitritocobalt(III) ion e. trans-diaquabis(ethylenediamine) copper(II) ion
The ferrate ion, \(\mathrm{FeO}_{4}{ }^{2-}\), is such a powerful oxidizing agent that in acidic solution, aqueous ammonia is reduced to elemental nitrogen along with the formation of the iron(III) ion. a. What is the oxidation state of iron in \(\mathrm{FeO}_{4}{ }^{2-}\), and what is the electron configuration of iron in this polyatomic ion? b. If \(25.0 \mathrm{~mL}\) of a \(0.243 \mathrm{M} \mathrm{FeO}_{4}^{2-}\) solution is allowed to react with \(55.0 \mathrm{~mL}\) of \(1.45 M\) aqueous ammonia, what volume of nitrogen gas can form at \(25^{\circ} \mathrm{C}\) and \(1.50 \mathrm{~atm}\) ?
When an aqueous solution of \(\mathrm{KCN}\) is added to a solution containing \(\mathrm{Ni}^{2+}\) ions, a precipitate forms, which redissolves on addition of more KCN solution. Write reactions describing what happens in this solution. [Hint: \(\mathrm{CN}^{-}\) is a Brónsted-Lowry base \(\left(K_{\mathrm{b}}=10^{-5}\right)\) and a Lewis base. \(]\)
Carbon monoxide is toxic because it binds more strongly to iron in hemoglobin (Hb) than does \(\mathrm{O}_{2}\). Consider the following reactions and approximate standard free energy changes: $$\begin{array}{cl}\mathrm{Hb}+\mathrm{O}_{2} \longrightarrow \mathrm{HbO}_{2} & \Delta G^{\circ}=-70 \mathrm{~kJ} \\ \mathrm{Hb}+\mathrm{CO} \longrightarrow \mathrm{HbCO} & \Delta G^{\circ}=-80 \mathrm{~kJ}\end{array}$$ Using these data, estimate the equilibrium constant value at \(25^{\circ} \mathrm{C}\) for the following reaction: $$\mathrm{HbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HbCO}+\mathrm{O}_{2}$$
Which of the following ligands are capable of linkage isomerism? Explain your answer. $$\mathrm{SCN}^{-}, \mathrm{N}_{3}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{OCN}^{-}, \mathrm{I}^{-}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.