Chapter 21: Problem 100
a. In the absorption spectrum of the complex ion [Cr(NCS) \(\left._{6}\right]^{3-}\), there is a band corresponding to the absorption of a photon of light with an energy of \(1.75 \times 10^{4} \mathrm{~cm}^{-1}\). Given \(1 \mathrm{~cm}^{-1}=\) \(1.986 \times 10^{-23} \mathrm{~J}\), what is the wavelength of this photon? b. The \(\mathrm{Cr}-\mathrm{N}-\mathrm{C}\) bond angle in \(\left[\mathrm{Cr}(\mathrm{NCS})_{6}\right]^{3-}\) is predicted to be \(180^{\circ}\). What is the hybridization of the \(\mathrm{N}\) atom in the \(\mathrm{NCS}^{-}\) ligand when a Lewis acid-base reaction occurs between \(\mathrm{Cr}^{3+}\) and \(\mathrm{NCS}^{-}\) that would give a \(180^{\circ} \mathrm{Cr}-\mathrm{N}-\mathrm{C}\) bond angle? \(\left[\mathrm{Cr}(\mathrm{NCS})_{6}\right]^{3-}\) undergoes substitution by ethylenediammine (en) according to the equation \(\left[\mathrm{Cr}(\mathrm{NCS})_{6}\right]^{3-}+2 \mathrm{en} \longrightarrow\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]^{+}+4 \mathrm{NCS}^{-}\) Does \(\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]^{+}\) exhibit geometric isomerism? Does \(\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\mathrm{en})_{2}\right]^{+}\) exhibit optical isomerism?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.