Chapter 20: Problem 7
In most compounds, the solid phase is denser than the liquid phase. Why isn't this true for water?
Chapter 20: Problem 7
In most compounds, the solid phase is denser than the liquid phase. Why isn't this true for water?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe U.S. Public Health Service recommends the fluoridation of water as a means for preventing tooth decay. The recommended concentration is \(1 \mathrm{mg} \mathrm{F}^{-}\) per liter. The presence of calcium ions in hard water can precipitate the added fluoride. What is the maximum molarity of calcium ions in hard water if the fluoride concentration is at the USPHS recommended level? ( \(K_{\text {sp }}\) for \(\left.\mathrm{CaF}_{2}=4.0 \times 10^{-11} .\right)\)
Fluorine reacts with sulfur to form several different covalent compounds. Three of these compounds are \(\mathrm{SF}_{2}, \mathrm{SF}_{4}\), and \(\mathrm{SF}_{6}\). Draw the Lewis structures for these compounds, and predict the molecular structures (including bond angles). Would you expect \(\mathrm{OF}_{4}\) to be a stable compound?
One pathway for the destruction of ozone in the upper atmosphere is $$\begin{array}{l}\mathrm{O}_{3}(g)+\mathrm{NO}(g) \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \quad \text { Slow } \\\\\mathrm{NO}_{2}(g)+\mathrm{O}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{O}_{2}(g) \quad \text { Fast } \\ \text { Overall reaction: } \mathrm{O}_{3}(g)+\mathrm{O}(g) \rightarrow 2 \mathrm{O}_{2}(g)\end{array}$$ a. Which species is a catalyst? b. Which species is an intermediate? c. The activation energy \(E_{\mathrm{a}}\) for the uncatalyzed reaction $$\mathrm{O}_{3}(g)+\mathrm{O}(g) \longrightarrow 2 \mathrm{O}_{2}(g)$$ is \(14.0 \mathrm{~kJ} . E_{\mathrm{a}}\) for the same reaction when catalyzed by the presence of \(\mathrm{NO}\) is \(11.9 \mathrm{~kJ} .\) What is the ratio of the rate constant for the catalyzed reaction to that for the uncatalyzed reaction at \(25^{\circ} \mathrm{C}\) ? Assume that the frequency factor \(A\) is the same for each reaction. d. One of the concerns about the use of Freons is that they will migrate to the upper atmosphere, where chlorine atoms can be generated by the reaction $$\mathrm{CCl}_{2} \mathrm{~F}_{2} \stackrel{\mathrm{hr}}{\longrightarrow} \mathrm{CF}_{2} \mathrm{Cl}+\mathrm{Cl}$$ Freon- 12 Chlorine atoms also can act as a catalyst for the destruction of ozone. The first step of a proposed mechanism for chlorinecatalyzed ozone destruction is $$\mathrm{Cl}(g)+\mathrm{O}_{3}(g) \longrightarrow \mathrm{ClO}(g)+\mathrm{O}_{2}(g)$$ Slow Assuming a two-step mechanism, propose the second step in the mechanism and give the overall balanced equation. e. The activation energy for Cl-catalyzed destruction of ozone is \(2.1 \mathrm{~kJ} / \mathrm{mol}\). Estimate the efficiency with which \(\mathrm{Cl}\) atoms destroy ozone as compared with NO molecules at \(25^{\circ} \mathrm{C}\). Assume that the frequency factor \(A\) is the same for each catalyzed reaction and assume similar rate laws for each catalyzed reaction.
Trisodium phosphate (TSP) is an effective grease remover. Like many cleaners, TSP acts as a base in water. Write a balanced equation to account for this basic behavior.
Use bond energies to estimate the maximum wavelength of light that will cause the reaction $$\mathrm{O}_{3} \stackrel{\mathrm{hr}}{\longrightarrow} \mathrm{O}_{2}+\mathrm{O}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.