Chapter 20: Problem 42
Tin forms compounds in the \(+2\) and \(+4\) oxidation states. Therefore, when tin reacts with fluorine, two products are possible. Write balanced equations for the production of the two tin halide compounds and name them.
Chapter 20: Problem 42
Tin forms compounds in the \(+2\) and \(+4\) oxidation states. Therefore, when tin reacts with fluorine, two products are possible. Write balanced equations for the production of the two tin halide compounds and name them.
All the tools & learning materials you need for study success - in one app.
Get started for freeFluorine reacts with sulfur to form several different covalent compounds. Three of these compounds are \(\mathrm{SF}_{2}, \mathrm{SF}_{4}\), and \(\mathrm{SF}_{6}\). Draw the Lewis structures for these compounds, and predict the molecular structures (including bond angles). Would you expect \(\mathrm{OF}_{4}\) to be a stable compound?
How could you determine experimentally whether the compound \(\mathrm{Ga}_{2} \mathrm{Cl}_{4}\) contains two gallium(II) ions or one gallium(I) and one gallium(III) ion? (Hint: Consider the electron configurations of the three possible ions.)
Although nitrogen trifluoride \(\left(\mathrm{NF}_{3}\right)\) is a thermally stable compound, nitrogen triiodide \(\left(\mathrm{NI}_{3}\right)\) is known to be a highly explosive material. \(\mathrm{NI}_{3}\) can be synthesized according to the equation $$\mathrm{BN}(s)+3 \mathrm{IF}(g) \longrightarrow \mathrm{BF}_{3}(g)+\mathrm{NI}_{3}(g)$$ a. What is the enthalpy of formation for \(\mathrm{NI}_{3}(s)\) given the enthalpy of reaction ( \(-307 \mathrm{~kJ}\) ) and the enthalpies of formation for \(\mathrm{BN}(s)(-254 \mathrm{~kJ} / \mathrm{mol}), \mathrm{IF}(g)(-96 \mathrm{~kJ} / \mathrm{mol})\), and \(\mathrm{BF}_{3}(g)\) \((-1136 \mathrm{~kJ} / \mathrm{mol}) ?\) b. It is reported that when the synthesis of \(\mathrm{NI}_{3}\) is conducted using \(4 \mathrm{~mol} \mathrm{IF}\) for every \(1 \mathrm{~mol} \mathrm{BN}\), one of the by-products isolated is \(\left[\mathrm{IF}_{2}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-}\). What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?
In most compounds, the solid phase is denser than the liquid phase. Why isn't this true for water?
An unknown element is a nonmetal and has a valence electron configuration of \(n s^{2} n p^{4}\). a. How many valence electrons does this element have? b. What are some possible identities for this element? c. What is the formula of the compound(s) this element would form with lithium? hydrogen? magnesium? aluminum? fluorine?
What do you think about this solution?
We value your feedback to improve our textbook solutions.