Chapter 20: Problem 32
Write a balanced equation describing the reaction of aluminum metal with concentrated aqueous sodium hydroxide.
Chapter 20: Problem 32
Write a balanced equation describing the reaction of aluminum metal with concentrated aqueous sodium hydroxide.
All the tools & learning materials you need for study success - in one app.
Get started for freeOne harmful effect of acid rain is the deterioration of structures and statues made of marble or limestone, both of which are essentially calcium carbonate. The reaction of calcium carbonate with sulfuric acid yields carbon dioxide, water, and calcium sulfate. Because calcium sulfate is marginally soluble in water, part of the object is washed away by the rain. Write a balanced chemical equation for the reaction of sulfuric acid with calcium carbonate.
a. Many biochemical reactions that occur in cells require relatively high concentrations of potassium ion \(\left(\mathrm{K}^{+}\right) .\) The concentration of \(\mathrm{K}^{+}\) in muscle cells is about \(0.15 \mathrm{M}\). The concentration of \(\mathrm{K}^{+}\) in blood plasma is about \(0.0050 M\). The high internal concentration in cells is maintained by pumping \(\mathrm{K}^{+}\) from the plasma. How much work must be done to transport \(1.0 \mathrm{~mol} \mathrm{~K}^{+}\) from the blood to the inside of a muscle cell at \(37^{\circ} \mathrm{C}\) (normal body temperature)? b. When \(1.0 \mathrm{~mol} \mathrm{~K}^{+}\) is transferred from blood to the cells, do any other ions have to be transported? Why or why not? c. Cells use the hydrolysis of adenosine triphosphate, abbreviated ATP, as a source of energy. Symbolically, this reaction can be represented as $$\operatorname{ATP}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{ADP}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)$$ where ADP represents adenosine diphosphate. For this reaction at \(37^{\circ} \mathrm{C}, K=1.7 \times 10^{5}\). How many moles of ATP must be hydrolyzed to provide the energy for the transport of \(1.0 \mathrm{~mol}\) \(\mathrm{K}^{+}\) ? Assume standard conditions for the ATP hydrolysis reaction.
Tin forms compounds in the \(+2\) and \(+4\) oxidation states. Therefore, when tin reacts with fluorine, two products are possible. Write balanced equations for the production of the two tin halide compounds and name them.
The compound with the formula \(\mathrm{TII}_{3}\) is a black solid. Given the following standard reduction potentials: $$\begin{aligned}\mathrm{Tl}^{3+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Tl}^{+} & \mathscr{E}^{\circ}=+1.25 \mathrm{~V} \\ \mathrm{I}_{3}^{-}+2 \mathrm{e}^{-} \longrightarrow 3 \mathrm{I}^{-} & \mathscr{E}^{\circ}=+0.55 \mathrm{~V} \end{aligned}$$ would you formulate this compound as thallium(III) iodide or thallium(I) triiodide?
Although nitrogen trifluoride \(\left(\mathrm{NF}_{3}\right)\) is a thermally stable compound, nitrogen triiodide \(\left(\mathrm{NI}_{3}\right)\) is known to be a highly explosive material. \(\mathrm{NI}_{3}\) can be synthesized according to the equation $$\mathrm{BN}(s)+3 \mathrm{IF}(g) \longrightarrow \mathrm{BF}_{3}(g)+\mathrm{NI}_{3}(g)$$ a. What is the enthalpy of formation for \(\mathrm{NI}_{3}(s)\) given the enthalpy of reaction ( \(-307 \mathrm{~kJ}\) ) and the enthalpies of formation for \(\mathrm{BN}(s)(-254 \mathrm{~kJ} / \mathrm{mol}), \mathrm{IF}(g)(-96 \mathrm{~kJ} / \mathrm{mol})\), and \(\mathrm{BF}_{3}(g)\) \((-1136 \mathrm{~kJ} / \mathrm{mol}) ?\) b. It is reported that when the synthesis of \(\mathrm{NI}_{3}\) is conducted using \(4 \mathrm{~mol} \mathrm{IF}\) for every \(1 \mathrm{~mol} \mathrm{BN}\), one of the by-products isolated is \(\left[\mathrm{IF}_{2}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-}\). What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?
What do you think about this solution?
We value your feedback to improve our textbook solutions.