Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The electrolysis of aqueous sodium chloride (brine) is an important industrial process for the production of chlorine and sodium hydroxide. In fact, this process is the second largest consumer of electricity in the United States, after the production of aluminum. Write a balanced equation for the electrolysis of aqueous sodium chloride (hydrogen gas is also produced).

Short Answer

Expert verified
The balanced chemical equation for the electrolysis of aqueous sodium chloride is: \(2Cl^-(aq) + 2H_2O(l) \rightarrow Cl_2(g) + H_2(g) + 2OH^-(aq)\), which produces chlorine gas, hydrogen gas, and hydroxide ions.

Step by step solution

01

Write the half-reactions for the anode and the cathode

In the electrolysis process, oxidation happens at the anode and reduction at the cathode. For the electrolysis of aqueous sodium chloride, the half-reactions are as follows: Anode (oxidation): \(2Cl^-(aq) \rightarrow Cl_2(g) + 2e^-\) Cathode (reduction): \(2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)\)
02

Balance the electrons in the half-reactions

In this case, the number of electrons in the half-reactions is already balanced. Both half-reactions have 2 electrons each.
03

Combine the half-reactions to form the overall balanced equation

To obtain the overall balanced equation for the electrolysis of aqueous sodium chloride, we need to add the half-reactions for the anode and the cathode: \[2Cl^-(aq) + 2H_2O(l) \rightarrow Cl_2(g) + H_2(g) + 2OH^-(aq)\] This is the balanced chemical equation for the electrolysis of aqueous sodium chloride, producing chlorine gas, hydrogen gas, and hydroxide ions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Lead forms compounds in the \(+2\) and \(+4\) oxidation states. All lead(II) halides are known (and are known to be ionic). Only \(\mathrm{PbF}_{4}\) and \(\mathrm{PbCl}_{4}\) are known among the possible lead(IV) halides. Presumably lead(IV) oxidizes bromide and iodide ions, producing the lead(II) halide and the free halogen: Suppose \(25.00 \mathrm{~g}\) of a lead(IV) halide reacts to form \(16.12 \mathrm{~g}\) of a lead(II) halide and the free halogen. Identify the halogen.

Phosphate buffers are important in regulating the \(\mathrm{pH}\) of intracellular fluids at \(\mathrm{pH}\) values generally between \(7.1\) and \(7.2\). What is the concentration ratio of \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\) to \(\mathrm{HPO}_{4}^{2-}\) in intracellular fluid at \(\mathrm{pH}=7.15 ?\) \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \rightleftharpoons \mathrm{HPO}_{4}^{2-}(a q)+\mathrm{H}^{+}(a q) \quad K_{\mathrm{a}}=6.2 \times 10^{-8}\) Why is a buffer composed of \(\mathrm{H}_{3} \mathrm{PO}_{4}\) and \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\) ineffective in buffering the \(\mathrm{pH}\) of intracellular fluid? \(\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}^{+}(a q) \quad K_{\mathrm{a}}=7.5 \times 10^{-3}\)

The xenon halides and oxides are isoelectronic with many other compounds and ions containing halogens. Give a molecule or ion in which iodine is the central atom that is isoelectronic with each of the following. a. xenon tetroxide d. xenon tetrafluoride b. xenon trioxide e. xenon hexafluoride c. xenon difluoride

Use bond energies (Table 8.4) to show that the preferred products for the decomposition of \(\mathrm{N}_{2} \mathrm{O}_{3}\) are \(\mathrm{NO}_{2}\) and \(\mathrm{NO}\) rather than \(\mathrm{O}_{2}\) and \(\mathrm{N}_{2} \mathrm{O}\). (The \(\mathrm{N}-\mathrm{O}\) single bond energy is \(201 \mathrm{~kJ} / \mathrm{mol} .\) ) Hint: Consider the reaction kinetics.

Carbon and sulfur form compounds with the formulas \(\mathrm{CS}_{2}\) and \(\mathrm{C}_{3} \mathrm{~S}_{2} .\) Draw Lewis structures and predict the shapes of these two compounds.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free