Chapter 19: Problem 78
The most significant source of natural radiation is radon- \(222 .\) \({ }^{222} \mathrm{Rn}\), a decay product of \({ }^{238} \mathrm{U}\), is continuously generated in the earth's crust, allowing gaseous Rn to seep into the basements of buildings. Because \({ }^{222} \mathrm{Rn}\) is an \(\alpha\) -particle producer with a relatively short half-life of \(3.82\) days, it can cause biological damage when inhaled. a. How many \(\alpha\) particles and \(\beta\) particles are produced when \({ }^{238} \mathrm{U}\) decays to \({ }^{222} \mathrm{Rn}\) ? What nuclei are produced when \({ }^{222} \mathrm{Rn}\) decays? b. Radon is a noble gas so one would expect it to pass through the body quickly. Why is there a concern over inhaling \({ }^{222} \mathrm{Rn}\) ? c. Another problem associated with \({ }^{222} \mathrm{Rn}\) is that the decay of \({ }^{222} \mathrm{Rn}\) produces a more potent \(\alpha\) -particle producer \(\left(t_{1 / 2}=3.11\right.\) min) that is a solid. What is the identity of the solid? Give the balanced equation of this species decaying by \(\alpha\) -particle production. Why is the solid a more potent \(\alpha\) -particle producer? d. The U.S. Environmental Protection Agency (EPA) recommends that \({ }^{222} \mathrm{Rn}\) levels not exceed \(4 \mathrm{pCi}\) per liter of air \((1 \mathrm{Ci}=\) 1 curie \(=3.7 \times 10^{10}\) decay events per second; \(1 \mathrm{pCi}=1 \times\) \(10^{-12} \mathrm{Ci}\). Convert \(4.0 \mathrm{pCi}\) per liter of air into concentrations units of \(^{222} \mathrm{Rn}\) atoms per liter of air and moles of \({ }^{222} \mathrm{Rn}\) per liter of air.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.