Chapter 19: Problem 5
What are transuranium elements and how are they synthesized?
Chapter 19: Problem 5
What are transuranium elements and how are they synthesized?
All the tools & learning materials you need for study success - in one app.
Get started for freeIodine- 131 is used in the diagnosis and treatment of thyroid disease and has a half-life of \(8.0\) days. If a patient with thyroid disease consumes a sample of \(\mathrm{Na}^{131}\) I containing \(10 . \mu \mathrm{g}{ }^{131} \mathrm{I}\), how long will it take for the amount of \({ }^{131} \mathrm{I}\) to decrease to \(1 / 100\) of the original amount?
The most stable nucleus in terms of binding energy per nucleon is \({ }^{56} \mathrm{Fe}\). If the atomic mass of \({ }^{56} \mathrm{Fe}\) is \(55.9349 \mathrm{amu}\), calculate the binding energy per nucleon for \({ }^{56} \mathrm{Fe}\).
When using a Geiger-Müller counter to measure radioactivity, it is necessary to maintain the same geometrical orientation between the sample and the Geiger-Müller tube to compare different measurements. Why?
Define "third-life" in a similar way to "half-life" and determine the "third- life" for a nuclide that has a half-life of \(31.4\) years.
To determine the \(K_{\mathrm{sp}}\) value of \(\mathrm{Hg}_{2} \mathrm{I}_{2}\), a chemist obtained a solid sample of \(\mathrm{Hg}_{2} \mathrm{I}_{2}\) in which some of the iodine is present as radioactive \({ }^{131} \mathrm{I}\). The count rate of the \(\mathrm{Hg}_{2} \mathrm{I}_{2}\) sample is \(5.0 \times 10^{11}\) counts per minute per mole of \(I\). An excess amount of \(\mathrm{Hg}_{2} \mathrm{I}_{2}(s)\) is placed into some water, and the solid is allowed to come to equilibrium with its respective ions. A \(150.0-\mathrm{mL}\) sample of the saturated solution is withdrawn and the radioactivity measured at 33 counts per minute. From this information, calculate the \(K_{\mathrm{sp}}\) value for \(\mathrm{Hg}_{2} \mathrm{I}_{2}\) $$\mathrm{Hg}_{2} \mathrm{I}_{2}(s) \rightleftharpoons \mathrm{Hg}_{2}^{2+}(a q)+2 \mathrm{I}^{-}(a q) \quad K_{\mathrm{sp}}=\left[\mathrm{Hg}_{2}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.