Chapter 19: Problem 10
A recent study concluded that any amount of radiation exposure can cause biological damage. Explain the differences between the two models of radiation damage, the linear model and the threshold model.
Chapter 19: Problem 10
A recent study concluded that any amount of radiation exposure can cause biological damage. Explain the differences between the two models of radiation damage, the linear model and the threshold model.
All the tools & learning materials you need for study success - in one app.
Get started for freeUranium- 235 undergoes a series of \(\alpha\) -particle and \(\beta\) -particle productions to end up as lead-207. How many \(\alpha\) particles and \(\beta\) particles are produced in the complete decay series?
Fresh rainwater or surface water contains enough tritium \(\left({ }^{3} \mathrm{H}\right)\) to show \(5.5\) decay events per minute per \(100 . \mathrm{g}\) water. Tritium has a half-life of \(12.3\) years. You are asked to check a vintage wine that is claimed to have been produced in \(1946 .\) How many decay events per minute should you expect to observe in \(100 . \mathrm{g}\) of that wine?
Scientists have estimated that the earth's crust was formed \(4.3\) billion years ago. The radioactive nuclide \({ }^{176} \mathrm{Lu}\), which decays to \({ }^{176} \mathrm{Hf}\), was used to estimate this age. The half-life of \({ }^{176} \mathrm{Lu}\) is 37 billion years. How are ratios of \({ }^{176} \mathrm{Lu}\) to \({ }^{176} \mathrm{Hf}\) utilized to date very old rocks?
A positron and an electron can annihilate each other on colliding, producing energy as photons: $${ }_{-1}^{0} \mathrm{e}+{ }_{+1}^{0} \mathrm{e} \longrightarrow 2{ }_{0}^{0} \gamma$$ Assuming that both \(\gamma\) rays have the same energy, calculate the wavelength of the electromagnetic radiation produced.
The mass percent of carbon in a typical human is \(18 \%\), and the mass percent of \({ }^{14} \mathrm{C}\) in natural carbon is \(1.6 \times 10^{-10} \%\). Assuming a \(180-\mathrm{lb}\) person, how many decay events per second occur in this person due exclusively to the \(\beta\) -particle decay of \({ }^{14} \mathrm{C}\) (for \({ }^{14} \mathrm{C}\), \(t_{1 / 2}=5730\) years)?
What do you think about this solution?
We value your feedback to improve our textbook solutions.