Chapter 18: Problem 9
Explain why cell potentials are not multiplied by the coefficients in the balanced redox equation. (Use the relationship between \(\Delta G\) and cell potential to do this.)
Chapter 18: Problem 9
Explain why cell potentials are not multiplied by the coefficients in the balanced redox equation. (Use the relationship between \(\Delta G\) and cell potential to do this.)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe free energy change for a reaction, \(\Delta G\), is an extensive property. What is an extensive property? Surprisingly, one can calculate \(\Delta G\) from the cell potential, \(\mathscr{b}\), for the reaction. This is surprising because \(\mathscr{B}\) is an intensive property. How can the extensive property \(\Delta G\) be calculated from the intensive property \(\mathscr{E}\) ?
Define oxidation and reduction in terms of both change in oxidation number and electron loss or gain.
Sketch the galvanic cells based on the following overall reactions. Show the direction of electron flow and identify the cathode and anode. Give the overall balanced equation. Assume that all concentrations are \(1.0 M\) and that all partial pressures are \(1.0 \mathrm{~atm}\). a. \(\mathrm{Cr}^{3+}(a q)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Cl}^{-}(a q)\) b. \(\mathrm{Cu}^{2+}(a q)+\mathrm{Mg}(s) \rightleftharpoons \mathrm{Mg}^{2+}(a q)+\mathrm{Cu}(s)\)
Consider the galvanic cell based on the following half-reactions: $$\begin{array}{ll}\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au} & \mathscr{E}^{\circ}=1.50 \mathrm{~V} \\ \mathrm{Tl}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Tl} & \mathscr{E}^{\circ}=-0.34 \mathrm{~V} \end{array}$$ a. Determine the overall cell reaction and calculate \(\mathscr{E}_{\mathrm{ccll}}^{\circ}\) b. Calculate \(\Delta G^{\circ}\) and \(K\) for the cell reaction at \(25^{\circ} \mathrm{C}\). c. Calculate \(\mathscr{E}_{\text {cell }}\) at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{Au}^{3+}\right]=1.0 \times 10^{-2} M\) and \(\left[\mathrm{Tl}^{+}\right]=1.0 \times 10^{-4} \mathrm{M}\)
In making a specific galvanic cell, explain how one decides on the electrodes and the solutions to use in the cell.
What do you think about this solution?
We value your feedback to improve our textbook solutions.