Chapter 18: Problem 3
You want to "plate out" nickel metal from a nickel nitrate solution onto a piece of metal inserted into the solution. Should you use copper or zinc? Explain.
Chapter 18: Problem 3
You want to "plate out" nickel metal from a nickel nitrate solution onto a piece of metal inserted into the solution. Should you use copper or zinc? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe solubility product for \(\operatorname{Cul}(s)\) is \(1.1 \times 10^{-12}\). Calculate the value of \(\mathscr{E}^{\circ}\) for the half-reaction $$\mathrm{CuI}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}+\mathrm{I}^{-}$$
The ultimate electron acceptor in the respiration process is molecular oxygen. Electron transfer through the respiratory chain takes place through a complex series of oxidation-reduction reactions. Some of the electron transport steps use iron-containing proteins called cytochromes. All cytochromes transport electrons by converting the iron in the cytochromes from the \(+3\) to the \(+2\) oxidation state. Consider the following reduction potentials for three different cytochromes used in the transfer process of electrons to oxygen (the potentials have been corrected for \(\mathrm{pH}\) and for temperature): \(\begin{aligned} \text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{B} &=0.385 \mathrm{~V} \\ \text { cytochrome } \mathrm{b}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{b}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{E} &=0.030 \mathrm{~V} \\ \text { cytochrome } \mathrm{c}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{c}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{Z} &=0.254 \mathrm{~V} \end{aligned}\) In the electron transfer series, electrons are transferred from one cytochrome to another. Using this information, determine the cytochrome order necessary for spontaneous transport of electrons from one cytochrome to another, which eventually will lead to electron transfer to \(\mathrm{O}_{2}\).
Given the following two standard reduction potentials, $$\mathrm{M}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{M} \quad \mathscr{E}^{\circ}=-0.10 \mathrm{~V}$$ $$\mathrm{M}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{M} \quad \mathscr{E}^{\circ}=-0.50 \mathrm{~V}$$ solve for the standard reduction potential of the half- reaction$$\mathrm{M}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{M}^{2+}$$
Estimate \(\mathscr{C}^{\circ}\) for the half-reaction $$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$$ given the following values of \(\Delta G_{\mathrm{f}}^{\circ}\) : $$\begin{aligned}\mathrm{H}_{2} \mathrm{O}(l) &=-237 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}_{2}(g) &=0.0 \\\\\mathrm{OH}^{-}(a q) &=-157 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{e}^{-} &=0.0\end{aligned}$$ Compare this value of \(\mathscr{E}^{\circ}\) with the value of \(\mathscr{b}^{\circ}\) given in Table \(18.1\).
You have a concentration cell in which the cathode has a silver electrode with \(0.10 \mathrm{MAg}^{+}\). The anode also has a silver electrode with \(\mathrm{Ag}^{+}(a q), 0.050 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\), and \(1.0 \times 10^{-3} \mathrm{M} \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}\). You read the voltage to be \(0.76 \mathrm{~V}\). a. Calculate the concentration of \(\mathrm{Ag}^{+}\) at the anode. b. Determine the value of the equilibrium constant for the formation of \(\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}\) \(\mathrm{Ag}^{+}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}(a q) \quad K=?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.