Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Define oxidation and reduction in terms of both change in oxidation number and electron loss or gain.

Short Answer

Expert verified
Oxidation is a chemical process involving electron loss, leading to an increase in the oxidation number of an atom or ion. Reduction, on the other hand, is a chemical process involving electron gain, resulting in a decrease in the oxidation number of an atom or ion.

Step by step solution

01

Define Oxidation in Terms of Electron Loss

Oxidation is a chemical process that occurs when a species loses electrons. In other words, it is the increase in the oxidation number of an atom or ion.
02

Define Reduction in Terms of Electron Gain

Reduction is a chemical process that occurs when a species gains electrons. In other words, it is the decrease in the oxidation number of an atom or ion.
03

Define Oxidation in Terms of Change in Oxidation Number

When oxidation occurs, the oxidation number of the species increases. This increase in the oxidation number indicates that the atom or ion has lost electrons, leading to a positive or less negative charge.
04

Define Reduction in Terms of Change in Oxidation Number

When reduction occurs, the oxidation number of the species decreases. This decrease in the oxidation number indicates that the atom or ion has gained electrons, leading to a negative or less positive charge.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You have a concentration cell in which the cathode has a silver electrode with \(0.10 \mathrm{MAg}^{+}\). The anode also has a silver electrode with \(\mathrm{Ag}^{+}(a q), 0.050 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\), and \(1.0 \times 10^{-3} \mathrm{M} \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}\). You read the voltage to be \(0.76 \mathrm{~V}\). a. Calculate the concentration of \(\mathrm{Ag}^{+}\) at the anode. b. Determine the value of the equilibrium constant for the formation of \(\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}\) \(\mathrm{Ag}^{+}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}(a q) \quad K=?\)

The overall reaction and equilibrium constant value for a hydrogen-oxygen fuel cell at \(298 \mathrm{~K}\) is $$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(I) \quad K=1.28 \times 10^{83}$$ a. Calculate \(\mathscr{C}^{\circ}\) and \(\Delta G^{\circ}\) at \(298 \mathrm{~K}\) for the fuel cell reaction. b. Predict the signs of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) for the fuel cell reaction. c. As temperature increases, does the maximum amount of work obtained from the fuel cell reaction increase, decrease, or remain the same? Explain.

Given the following two standard reduction potentials, $$\mathrm{M}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{M} \quad \mathscr{E}^{\circ}=-0.10 \mathrm{~V}$$ $$\mathrm{M}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{M} \quad \mathscr{E}^{\circ}=-0.50 \mathrm{~V}$$ solve for the standard reduction potential of the half- reaction$$\mathrm{M}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{M}^{2+}$$

What is electrochemistry? What are redox reactions? Explain the difference between a galvanic and an electrolytic cell.

The ultimate electron acceptor in the respiration process is molecular oxygen. Electron transfer through the respiratory chain takes place through a complex series of oxidation-reduction reactions. Some of the electron transport steps use iron-containing proteins called cytochromes. All cytochromes transport electrons by converting the iron in the cytochromes from the \(+3\) to the \(+2\) oxidation state. Consider the following reduction potentials for three different cytochromes used in the transfer process of electrons to oxygen (the potentials have been corrected for \(\mathrm{pH}\) and for temperature): \(\begin{aligned} \text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{a}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{B} &=0.385 \mathrm{~V} \\ \text { cytochrome } \mathrm{b}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{b}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{E} &=0.030 \mathrm{~V} \\ \text { cytochrome } \mathrm{c}\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \longrightarrow \text { cytochrome } \mathrm{c}\left(\mathrm{Fe}^{2+}\right) & \\ \mathscr{Z} &=0.254 \mathrm{~V} \end{aligned}\) In the electron transfer series, electrons are transferred from one cytochrome to another. Using this information, determine the cytochrome order necessary for spontaneous transport of electrons from one cytochrome to another, which eventually will lead to electron transfer to \(\mathrm{O}_{2}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free