Chapter 18: Problem 121
When aluminum foil is placed in hydrochloric acid, nothing happens for the first 30 seconds or so. This is followed by vigorous bubbling and the eventual disappearance of the foil. Explain these observations.
Chapter 18: Problem 121
When aluminum foil is placed in hydrochloric acid, nothing happens for the first 30 seconds or so. This is followed by vigorous bubbling and the eventual disappearance of the foil. Explain these observations.
All the tools & learning materials you need for study success - in one app.
Get started for freeZirconium is one of the few metals that retains its structural integrity upon exposure to radiation. For this reason, the fuel rods in most nuclear reactors are made of zirconium. Answer the following questions about the redox properties of zirconium based on the half-reaction \(\mathrm{ZrO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow \mathrm{Zr}+4 \mathrm{OH}^{-} \quad \mathscr{E}^{\circ}=-2.36 \mathrm{~V}\) a. Is zirconium metal capable of reducing water to form hydrogen gas at standard conditions? b. Write a balanced equation for the reduction of water by zirconium metal. c. Calculate \(\mathscr{8}^{\circ}, \Delta G^{\circ}\), and \(K\) for the reduction of water by zirconium metal. d. The reduction of water by zirconium occurred during the accident at Three Mile Island, Pennsylvania, in \(1979 .\) The hydrogen produced was successfully vented and no chemical explosion occurred. If \(1.00 \times 10^{3} \mathrm{~kg} \mathrm{Zr}\) reacts, what mass of \(\mathrm{H}_{2}\) is produced? What volume of \(\mathrm{H}_{2}\) at \(1.0 \mathrm{~atm}\) and \(1000 .{ }^{\circ} \mathrm{C}\) is produced? e. At Chernobyl, USSR, in 1986 , hydrogen was produced by the reaction of superheated steam with the graphite reactor core: $$\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g)$$ A chemical explosion involving the hydrogen gas did occur at Chernobyl. In light of this fact, do you think it was a correct decision to vent the hydrogen and other radioactive gases into the atmosphere at Three Mile Island? Explain.
Given the following two standard reduction potentials, $$\mathrm{M}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{M} \quad \mathscr{E}^{\circ}=-0.10 \mathrm{~V}$$ $$\mathrm{M}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{M} \quad \mathscr{E}^{\circ}=-0.50 \mathrm{~V}$$ solve for the standard reduction potential of the half- reaction$$\mathrm{M}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{M}^{2+}$$
Consider the galvanic cell based on the following half-reactions: $$\begin{array}{ll}\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au} & \mathscr{E}^{\circ}=1.50 \mathrm{~V} \\ \mathrm{Tl}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Tl} & \mathscr{E}^{\circ}=-0.34 \mathrm{~V} \end{array}$$ a. Determine the overall cell reaction and calculate \(\mathscr{E}_{\mathrm{ccll}}^{\circ}\) b. Calculate \(\Delta G^{\circ}\) and \(K\) for the cell reaction at \(25^{\circ} \mathrm{C}\). c. Calculate \(\mathscr{E}_{\text {cell }}\) at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{Au}^{3+}\right]=1.0 \times 10^{-2} M\) and \(\left[\mathrm{Tl}^{+}\right]=1.0 \times 10^{-4} \mathrm{M}\)
An aqueous solution of an unknown salt of ruthenium is electrolyzed by a current of \(2.50\) A passing for \(50.0 \mathrm{~min}\). If \(2.618 \mathrm{~g}\) Ru is produced at the cathode, what is the charge on the ruthenium ions in solution?
In 1973 the wreckage of the Civil War ironclad USS Monitor was discovered near Cape Hatteras, North Carolina. [The Monitor and the CSS Virginia (formerly the USS Merrimack) fought the first battle between iron-armored ships.] In 1987 investigations were begun to see if the ship could be salvaged. It was reported in Time (June 22,1987 ) that scientists were considering adding sacrificial anodes of zinc to the rapidly corroding metal hull of the Monitor. Describe how attaching zinc to the hull would protect the Monitor from further corrosion.
What do you think about this solution?
We value your feedback to improve our textbook solutions.