Chapter 17: Problem 95
Consider two perfectly insulated vessels. Vessel 1 initially contains an ice
cube at
Short Answer
Step by step solution
Analyze the system
Analyze the surroundings
Calculate the entropy change for the universe
Analyze the system
Analyze the surroundings
Calculate the entropy change for the universe
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Phase Transitions
During this phase change, the temperature of the substance remains constant while it absorbs heat, signifying a latent heat process. The degree of randomness, or entropy, increases, as seen in our vessel 1 scenario, because the liquid's molecules can move more freely than those in the solid. This increase in entropy is a significant prospect in predicting whether a phase transition will occur spontaneously, aligning with the second law of thermodynamics.
Thermodynamics
For our ice cube scenario, thermodynamics directs us to examine the transfer of energy as heat during the melting process and the subsequent effects on both the system (ice cube) and the surroundings (water or saltwater solution). The first law of thermodynamics, concerning the conservation of energy, and the second law, centering around the natural increase of entropy, are particularly pertinent to understanding these changes during the ice's phase transition.
Gibbs Free Energy
\begin{\begin{align*}\text{\(\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\)\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\(\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\)\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\(\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\)\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\(\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\)\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\(\begin{\beginNext Page »(Technically, this should be \begin{\begin{align*}\text{\)\begin{\beginNext Page »(Technically, this should be \begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin\text{\(\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin\beginLast Page »\begin{\beginLast Page »\begin{\beginLast Page »\begin{\beginLast Page »\begin{\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\begin{\text{\)\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\begin{\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginNext Page »\beginLast Page »(\begin{\beginLast Page »\begin{\beginLast Page »\begin{\beginLast Page »\begin{\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\beginLast Page »\begin{\beginLast Page »(\begin{\beginLast Page »(\begin{\beginLast Page »(\begin{\beginLast Page »(\begin{\beginLast Page »(\beginNext Page »(\beginNext Page »(\beginNext Page »\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginNext Page »(\beginNext Page »(\beginNext Page »\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginNext Page »(\beginNext Page »(\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginNext Page »(\beginNext Page »(\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginNext Page »(\beginNext Page »(\beginLast Page (\beginLast Page (\beginLast Page (\beginNext Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginLast Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginLast Page (\beginNext Page (( Delta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta \beginDelta G\beginDelta \beginDelta \beginDelta \beginDelta G\beginDelta (\beginDelta (\beginDelta G\beginDelta \beginDelta G\beginDelta \beginDelta G\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginDelta (\beginNext Page (\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginDelta G\beginNext Page (\beginDelta (\beginDelta (\beginDelta (Delta Delta Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta (Delta Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta Delta G(Delta Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta Delta Delta G(Delta G(Delta G(Delta Delta Delta G(Delta G(Delta Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta G(Delta Delta Delta Delta Delta Delta Delta G(Delta G(Delta G(Delta G\beginNext Page (\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\begin(\beginNext Page (\begin(\begin(\begin(\begin(\begin(\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\begin\text{$\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginNext Page (\beginLast Page (\beginLast Page (G) = H - TS is pivotal because it offers insight into spontaneity; reactions or processes with a negative G are spontaneous. This is fundamental when considering why the ice melts in our exercise: at a constant temperature, melting is spontaneous if the process leads to a decrease in G.
Enthalpy
Enthalpy, symbolized as H, is a measure of the total heat content of a thermodynamic system under constant pressure. It reflects the ability of a system to do mechanical work as heat is transferred. Enthalpy is a state function, meaning its change—ΔH—depends only on the start and end states, not the path taken. In phase transitions, such as melting, the enthalpy change is associated with the heat absorbed or released.
The melting of an ice cube, as described in the textbook problem, involves a positive enthalpy change, ΔH > 0, because the system absorbs heat. This heat exchange is crucial in maintaining the temperature phase transition. Furthermore, understanding this enthalpic change allows for the calculation of ΔG and ultimately the assessment of the process' spontaneity. Enthalpy changes also play a role in calculating the system's entropy, thereby affecting the entropy change of the universe ΔS_univ.