Chapter 17: Problem 8
Is \(\Delta S_{\text {surr }}\) favorable or unfavorable for exothermic reactions? Endothermic reactions? Explain.
Chapter 17: Problem 8
Is \(\Delta S_{\text {surr }}\) favorable or unfavorable for exothermic reactions? Endothermic reactions? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeIf wet silver carbonate is dried in a stream of hot air, the air must have a certain concentration level of carbon dioxide to prevent silver carbonate from decomposing by the reaction $$\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons \mathrm{Ag}_{2} \mathrm{O}(s)+\mathrm{CO}_{2}(g)$$ \(\Delta H^{\circ}\) for this reaction is \(79.14 \mathrm{~kJ} / \mathrm{mol}\) in the temperature range of 25 to \(125^{\circ} \mathrm{C}\). Given that the partial pressure of carbon dioxide in equilibrium with pure solid silver carbonate is \(6.23 \times 10^{-3}\) torr at \(25^{\circ} \mathrm{C}\), calculate the partial pressure of \(\mathrm{CO}_{2}\) necessary to prevent decomposition of \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) at \(110 .{ }^{\circ} \mathrm{C}\). (Hint: Manipulate the equation in Exercise 71 .)
When the environment is contaminated by a toxic or potentially toxic substance (for example, from a chemical spill or the use of insecticides), the substance tends to disperse. How is this consistent with the second law of thermodynamics? In terms of the second law, which requires the least work: cleaning the environment after it has been contaminated or trying to prevent the contamination before it occurs? Explain.
A green plant synthesizes glucose by photosynthesis, as shown in the reaction $$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g)$$ Animals use glucose as a source of energy: $$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$$ If we were to assume that both these processes occur to the same extent in a cyclic process, what thermodynamic property must have a nonzero value?
The equilibrium constant \(K\) for the reaction $$2 \mathrm{Cl}(g) \rightleftharpoons \mathrm{Cl}_{2}(g)$$ was measured as a function of temperature (Kelvin). A graph of \(\ln (K)\) versus \(1 / T\) for this reaction gives a straight line with a slope of \(1.352 \times 10^{4} \mathrm{~K}\) and a \(y\) -intercept of \(-14.51\). Determine the values of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) for this reaction. See Exercise 71 .
Consider the following reaction at \(25.0^{\circ} \mathrm{C}\) : $$2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g)$$ The values of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are \(-58.03 \mathrm{~kJ} / \mathrm{mol}\) and \(-176.6 \mathrm{~J} / \mathrm{K}\). mol, respectively. Calculate the value of \(K\) at \(25.0^{\circ} \mathrm{C}\). Assuming \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are temperature independent, estimate the value of \(K\) at \(100.0^{\circ} \mathrm{C}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.