Chapter 17: Problem 7
Predict the sign of \(\Delta S\) for each of the following and explain. a. the evaporation of alcohol b. the freezing of water c. compressing an ideal gas at constant temperature d. dissolving \(\mathrm{NaCl}\) in water
Chapter 17: Problem 7
Predict the sign of \(\Delta S\) for each of the following and explain. a. the evaporation of alcohol b. the freezing of water c. compressing an ideal gas at constant temperature d. dissolving \(\mathrm{NaCl}\) in water
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the reactions $$\begin{aligned}\mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) & \longrightarrow \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q) \\ \mathrm{Ni}^{2+}(a q)+3 \mathrm{en}(a q) & \longrightarrow \mathrm{Ni}(\mathrm{en})_{3}^{2+}(a q)\end{aligned}$$ where $$\text { en }=\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$$ The \(\Delta H\) values for the two reactions are quite similar, yet \(K_{\text {reaction } 2}>K_{\text {reaction } 1 .}\) Explain.
Consider the following reaction at \(800 . \mathrm{K}\) : $$\mathrm{N}_{2}(g)+3 \mathrm{~F}_{2}(g) \longrightarrow 2 \mathrm{NF}_{3}(g)$$ An equilibrium mixture contains the following partial pressures: \(P_{\mathrm{N}_{2}}=0.021 \mathrm{~atm}, P_{\mathrm{F}_{2}}=0.063 \mathrm{~atm}, P_{\mathrm{NF}_{3}}=0.48 \mathrm{~atm} .\) Calculate \(\Delta G^{\circ}\) for the reaction at \(800 . \mathrm{K}\).
A mixture of hydrogen gas and chlorine gas remains unreacted until it is exposed to ultraviolet light from a burning magnesium strip. Then the following reaction occurs very rapidly: $$\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{HCl}(g)$$ Explain.
Using data from Appendix 4, calculate \(\Delta G\) for the reaction $$2 \mathrm{H}_{2} \mathrm{~S}(g)+\mathrm{SO}_{2}(g) \rightleftharpoons 3 \mathrm{~S}_{\text {mombic }}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$$ for the following conditions at \(25^{\circ} \mathrm{C}\) : $$\begin{array}{l}P_{\mathrm{H}_{2} \mathrm{~S}}=1.0 \times 10^{-4} \mathrm{~atm} \\\P_{\mathrm{SO}_{2}}=1.0 \times 10^{-2} \mathrm{~atm} \\ P_{\mathrm{H}_{2} \mathrm{O}}=3.0 \times 10^{-2} \mathrm{~atm}\end{array}$$
Consider the following reaction at \(25.0^{\circ} \mathrm{C}\) : $$2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g)$$ The values of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are \(-58.03 \mathrm{~kJ} / \mathrm{mol}\) and \(-176.6 \mathrm{~J} / \mathrm{K}\). mol, respectively. Calculate the value of \(K\) at \(25.0^{\circ} \mathrm{C}\). Assuming \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) are temperature independent, estimate the value of \(K\) at \(100.0^{\circ} \mathrm{C}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.