Chapter 17: Problem 34
For mercury, the enthalpy of vaporization is \(58.51 \mathrm{~kJ} / \mathrm{mol}\) and the entropy of vaporization is \(92.92 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\). What is the normal boiling point of mercury?
Chapter 17: Problem 34
For mercury, the enthalpy of vaporization is \(58.51 \mathrm{~kJ} / \mathrm{mol}\) and the entropy of vaporization is \(92.92 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\). What is the normal boiling point of mercury?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe enthalpy of vaporization of chloroform \(\left(\mathrm{CHCl}_{3}\right)\) is \(31.4\) \(\mathrm{kJ} / \mathrm{mol}\) at its boiling point \(\left(61.7^{\circ} \mathrm{C}\right) .\) Determine \(\Delta S_{\mathrm{sys}}, \Delta S_{\mathrm{sur}}\), and \(\Delta S_{\text {univ }}\) when \(1.00 \mathrm{~mol}\) chloroform is vaporized at \(61.7^{\circ} \mathrm{C}\) and \(1.00 \mathrm{~atm} .\)
If wet silver carbonate is dried in a stream of hot air, the air must have a certain concentration level of carbon dioxide to prevent silver carbonate from decomposing by the reaction $$\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons \mathrm{Ag}_{2} \mathrm{O}(s)+\mathrm{CO}_{2}(g)$$ \(\Delta H^{\circ}\) for this reaction is \(79.14 \mathrm{~kJ} / \mathrm{mol}\) in the temperature range of 25 to \(125^{\circ} \mathrm{C}\). Given that the partial pressure of carbon dioxide in equilibrium with pure solid silver carbonate is \(6.23 \times 10^{-3}\) torr at \(25^{\circ} \mathrm{C}\), calculate the partial pressure of \(\mathrm{CO}_{2}\) necessary to prevent decomposition of \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) at \(110 .{ }^{\circ} \mathrm{C}\). (Hint: Manipulate the equation in Exercise 71 .)
Two crystalline forms of white phosphorus are known. Both forms contain \(\mathrm{P}_{4}\) molecules, but the molecules are packed together in different ways. The \(\alpha\) form is always obtained when the liquid freezes. However, below \(-76.9^{\circ} \mathrm{C}\), the \(\alpha\) form spontaneously converts to the \(\beta\) form: $$\mathrm{P}_{4}(s, \alpha) \longrightarrow \mathrm{P}_{4}(s, \beta)$$ a. Predict the signs of \(\Delta H\) and \(\Delta S\) for this process. b. Predict which form of phosphorus has the more ordered crystalline structure (has the smaller positional probability).
Consider the reaction $$2 \mathrm{O}(g) \longrightarrow \mathrm{O}_{2}(g)$$ a. Predict the signs of \(\Delta H\) and \(\Delta S\). b. Would the reaction be more spontaneous at high or low temperatures?
Consider a weak acid, HX. If a \(0.10 M\) solution of HX has a pH of \(5.83\) at \(25^{\circ} \mathrm{C}\), what is \(\Delta G^{\circ}\) for the acid's dissociation reaction at \(25^{\circ} \mathrm{C}\) ?
What do you think about this solution?
We value your feedback to improve our textbook solutions.