Chapter 17: Problem 28
Which of the following involve an increase in the entropy of the system? a. melting of a solid b. sublimation c. freezing d. mixing e. separation f. boiling
Chapter 17: Problem 28
Which of the following involve an increase in the entropy of the system? a. melting of a solid b. sublimation c. freezing d. mixing e. separation f. boiling
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following processes are spontaneous? a. Salt dissolves in \(\mathrm{H}_{2} \mathrm{O}\). b. A clear solution becomes a uniform color after a few drops of dye are added. c. Iron rusts. d. You clean your bedroom.
Consider the following reaction at \(800 . \mathrm{K}\) : $$\mathrm{N}_{2}(g)+3 \mathrm{~F}_{2}(g) \longrightarrow 2 \mathrm{NF}_{3}(g)$$ An equilibrium mixture contains the following partial pressures: \(P_{\mathrm{N}_{2}}=0.021 \mathrm{~atm}, P_{\mathrm{F}_{2}}=0.063 \mathrm{~atm}, P_{\mathrm{NF}_{3}}=0.48 \mathrm{~atm} .\) Calculate \(\Delta G^{\circ}\) for the reaction at \(800 . \mathrm{K}\).
Consider the reaction $$\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{HBr}(g)$$ where \(\Delta H^{\circ}=-103.8 \mathrm{~kJ} / \mathrm{mol} .\) In a particular experiment, equal moles of \(\mathrm{H}_{2}(\mathrm{~g})\) at \(1.00 \mathrm{~atm}\) and \(\mathrm{Br}_{2}(\mathrm{~g})\) at \(1.00 \mathrm{~atm}\) were mixed in a \(1.00\) -L flask at \(25^{\circ} \mathrm{C}\) and allowed to reach equilibrium. Then the molecules of \(\mathrm{H}_{2}\) at equilibrium were counted using a very sensitive technique, and \(1.10 \times 10^{13}\) molecules were found. For this reaction, calculate the values of \(K, \Delta G^{\circ}\), and \(\Delta S^{\circ}\).
The synthesis of glucose directly from \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) and the synthesis of proteins directly from amino acids are both nonspontaneous processes under standard conditions. Yet it is necessary for these to occur for life to exist. In light of the second law of thermodynamics, how can life exist?
When most biologic enzymes are heated, they lose their catalytic activity. The change Original enzyme \(\longrightarrow\) new form that occurs on heating is endothermic and spontaneous. Is the structure of the original enzyme or its new form more ordered (has the smaller positional probability)? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.