Chapter 17: Problem 101
Consider the system $$\mathrm{A}(g) \longrightarrow \mathrm{B}(g)$$ at \(25^{\circ} \mathrm{C}\). a. Assuming that \(G_{\mathrm{A}}^{\circ}=8996 \mathrm{~J} / \mathrm{mol}\) and \(G_{\mathrm{B}}^{\circ}=11,718 \mathrm{~J} / \mathrm{mol}\), cal- culate the value of the equilibrium constant for this reaction. b. Calculate the equilibrium pressures that result if \(1.00 \mathrm{~mol} \mathrm{~A}(\mathrm{~g})\) at \(1.00\) atm and \(1.00 \mathrm{~mol} \mathrm{~B}(g)\) at \(1.00 \mathrm{~atm}\) are mixed at \(25^{\circ} \mathrm{C}\). c. Show by calculations that \(\Delta G=0\) at equilibrium.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.