Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) b. \(\mathrm{Al}(\mathrm{OH})_{3}\) c. \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)

Short Answer

Expert verified
a) Dissolution reaction of \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\): \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(s)} \rightleftharpoons \mathrm{Ag}^{+} _{\mathrm{(aq)}} + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} _{\mathrm{(aq)}}\); Solubility product expression: \(K_\mathrm{sp} = [\mathrm{Ag}^{+}] [\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\) b) Dissolution reaction of \(\mathrm{Al}(\mathrm{OH})_{3}\): \(\mathrm{Al}(\mathrm{OH})_{3(s)} \rightleftharpoons \mathrm{Al}^{3+}_{\mathrm{(aq)}} + 3\mathrm{OH}^{-}_{\mathrm{(aq)}}\); Solubility product expression: \(K_\mathrm{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\) c) Dissolution reaction of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\): \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \rightleftharpoons 3\mathrm{Ca}^{2+}_{\mathrm{(aq)}} + 2\mathrm{PO}_{4}^{3-}_{\mathrm{(aq)}}\); Solubility product expression: \(K_\mathrm{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\)

Step by step solution

01

a) Dissolution reaction of \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\)#

To write the balanced equation for the dissolution of silver acetate \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\), we can dissociate the solid into its ionic species: \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(s)} \rightleftharpoons \mathrm{Ag}^{+} _{\mathrm{(aq)}} + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} _{\mathrm{(aq)}}\)
02

a) Solubility product expression of \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\)#

For the solubility product (\(K_\mathrm{sp}\)) expression, we can define the equilibrium constant for the dissolution reaction by multiplying the concentrations of the ions in their aqueous state: \(K_\mathrm{sp} = [\mathrm{Ag}^{+}] [\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\)
03

b) Dissolution reaction of \(\mathrm{Al}(\mathrm{OH})_{3}\)#

To write the balanced equation for the dissolution of aluminium hydroxide \(\mathrm{Al}(\mathrm{OH})_{3}\), we can dissociate the solid into its ionic species: \(\mathrm{Al}(\mathrm{OH})_{3(s)} \rightleftharpoons \mathrm{Al}^{3+}_{\mathrm{(aq)}} + 3\mathrm{OH}^{-}_{\mathrm{(aq)}}\)
04

b) Solubility product expression of \(\mathrm{Al}(\mathrm{OH})_{3}\)#

For the solubility product (\(K_\mathrm{sp}\)) expression, we can define the equilibrium constant for the dissolution reaction by multiplying the concentrations of the ions in their aqueous state: \(K_\mathrm{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\)
05

c) Dissolution reaction of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)#

To write the balanced equation for the dissolution of calcium phosphate \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\), we can dissociate the solid into its ionic species: \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \rightleftharpoons 3\mathrm{Ca}^{2+}_{\mathrm{(aq)}} + 2\mathrm{PO}_{4}^{3-}_{\mathrm{(aq)}}\)
06

c) Solubility product expression of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)#

For the solubility product (\(K_\mathrm{sp}\)) expression, we can define the equilibrium constant for the dissolution reaction by multiplying the concentrations of the ions in their aqueous state: \(K_\mathrm{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What mass of \(\mathrm{ZnS}\left(K_{\text {? }}=2.5 \times 10^{-22}\right.\) ) will dissolve in \(300.0 \mathrm{~mL}\) of \(0.050 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} ?\) Ignore the basic properties of \(\mathrm{S}^{2-}\) .

Calculate the solubility of \(\mathrm{AgCN}(s)\left(K_{\mathrm{sp}}=2.2 \times 10^{-12}\right)\) in a solution containing \(1.0 M \mathrm{H}^{+} .\left(K_{\mathrm{a}}\right.\) for \(\mathrm{HCN}\) is \(6.2 \times 10^{-10}\).)

\(\mathrm{Mg}(\mathrm{OH})_{2}\) is the main ingredient in the antacid TUMS and has a \(K_{\text {sp }}\) value of \(8.9 \times 10^{-12}\). If a \(10.0-\mathrm{g}\) sample of \(\mathrm{Mg}(\mathrm{OH})_{2}\) is placed in \(500.0 \mathrm{~mL}\) of solution, calculate the moles of \(\mathrm{OH}^{-}\) ions present. Because the \(K_{\mathrm{sp}}\) value for \(\mathrm{Mg}(\mathrm{OH})_{2}\) is small, not a lot of solid dissolves in solution. Explain how \(\mathrm{Mg}(\mathrm{OH})_{2}\) works to neutralize large amounts of stomach acids.

Which of the following will affect the total amount of solute that can dissolve in a given amount of solvent? a. The solution is stirred. b. The solute is ground to fine particles before dissolving. c. The temperature changes.

A solution contains \(2.0 \times 10^{-3} \mathrm{M} \mathrm{Ce}^{3+}\) and \(1.0 \times 10^{-2} \mathrm{M} \mathrm{IO}_{3}^{3-}\). Will \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}(s)\) precipitate? \(\left[K_{\text {sp }}\right.\) for \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) is \(\left.3.2 \times 10^{-10} .\right]\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free