Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Identify the Lewis acid and the Lewis base in each of the following reactions. a. \(\mathrm{Fe}^{3+}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q)\) b. \(\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)\) c. \(\mathrm{HgI}_{2}(s)+2 \mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{HgI}_{4}{ }^{2-}(a q)\)

Short Answer

Expert verified
In the given reactions: a. Lewis acid: \(\mathrm{Fe}^{3+}\) and Lewis base: \(\mathrm{H}_{2} \mathrm{O}\) b. Lewis acid: \(\mathrm{H}_{2} \mathrm{O}\) and Lewis base: \(\mathrm{CN}^{-}\) c. Lewis acid: \(\mathrm{HgI}_{2}\) and Lewis base: \(\mathrm{I}^{-}\)

Step by step solution

01

a. Identify the Lewis acid and Lewis base

In the reaction \(\mathrm{Fe}^{3+}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q)\), the \(\mathrm{Fe}^{3+}\) ion has a positive charge and can accept electron pairs to form a coordinate covalent bond with the negatively charged oxygen atom in \(\mathrm{H}_{2} \mathrm{O}\). Therefore, \(\mathrm{Fe}^{3+}\) is the Lewis acid, and \(\mathrm{H}_{2} \mathrm{O}\) is the Lewis base.
02

b. Identify the Lewis acid and Lewis base

In the reaction \(\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)\), the \(\mathrm{CN}^{-}\) ion can donate an electron pair to the hydrogen atom of the water molecule, forming the HCN molecule. The water molecule acts as an electron pair acceptor in this case. Therefore, \(\mathrm{H}_{2} \mathrm{O}\) is the Lewis acid, and \(\mathrm{CN}^{-}\) is the Lewis base.
03

c. Identify the Lewis acid and Lewis base

In the reaction \(\mathrm{HgI}_{2}(s)+2 \mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{HgI}_{4}{ }^{2-}(a q)\), HgI\(_2\), which is a solid, can accept electron pairs from the \(\mathrm{I}^{-}\) ions. As a result, HgI\(_4$$^{2-}\) is formed. In this case, \(\mathrm{HgI}_{2}\) is the Lewis acid, and \(\mathrm{I}^{-}\) is the Lewis base.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A sample containing \(0.0500 \mathrm{~mol} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) is dissolved in enough water to make \(1.00 \mathrm{~L}\) of solution. This solution contains hydrated \(\mathrm{SO}_{4}{ }^{2-}\) and \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}\) ions. The latter behaves as an acid: $$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q) \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}(a q)+\mathrm{H}^{+}(a q)$$ a. Calculate the expected osmotic pressure of this solution at \(25^{\circ} \mathrm{C}\) if the above dissociation is negligible. b. The actual osmotic pressure of the solution is \(6.73\) atm at \(25^{\circ} \mathrm{C}\). Calculate \(K_{\mathrm{a}}\) for the dissociation reaction of \(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\). (To do this calculation, you must assume that none of the ions goes through the semipermeable membrane. Actually, this is not a great assumption for the tiny \(\mathrm{H}^{+}\) ion.)

What are the major species present in \(0.250 M\) solutions of each of the following acids? Calculate the \(\mathrm{pH}\) of each of these solutions. a. \(\mathrm{HClO}_{4}\) b. \(\mathrm{HNO}_{3}\)

Monochloroacetic acid, \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}\), is a skin irritant that is used in "chemical peels" intended to remove the top layer of dead skin from the face and ultimately improve the complexion. The value of \(K_{\mathrm{a}}\) for monochloroacetic acid is \(1.35 \times 10^{-3}\). Calculate the \(\mathrm{pH}\) of a \(0.10 \mathrm{M}\) solution of monochloroacetic acid.

Calculate the \(\mathrm{pH}\) of a \(0.200 \mathrm{M}\) solution of \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHF}\). Hint: \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHF}\) is a salt composed of \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\) and \(\mathrm{F}^{-}\) ions. The prin- cipal equilibrium in this solution is the best acid reacting with the best base; the reaction for the principal equilibrium is \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons\) \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(a q)+\mathrm{HF}(a q) \quad K=8.2 \times 10^{-3}\)

A codeine-containing cough syrup lists codeine sulfate as a major ingredient instead of codeine. The Merck Index gives \(\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}\) as the formula for codeine sulfate. Describe the composition of codeine sulfate. (See Exercise 143.) Why is codeine sulfate used instead of codeine?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free