Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write out the stepwise \(K_{\mathrm{a}}\) reactions for citric acid \(\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)\), a triprotic acid.

Short Answer

Expert verified
The stepwise dissociation reactions and corresponding Ka expressions for citric acid are: 1. \( \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} (aq) + \mathrm{H}_{2} \mathrm{O} (l) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}_{\mathrm{a}} + \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-} (aq)\) $$K_{a1} = \dfrac{[\mathrm{H}_{3} \mathrm{O}_{\mathrm{aq}}][\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}]}{[\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}]}$$ 2. \( \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-} (aq) + \mathrm{H}_{2} \mathrm{O} (l) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}_{\mathrm{a}^{+}} + \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-} (aq)\) $$K_{a2} = \dfrac{[\mathrm{H}_{3} \mathrm{O}_{\mathrm{aq}}^+][\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}]}{[\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}]}$$ 3. \( \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-} (aq) + \mathrm{H}_{2} \mathrm{O} (l) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}_{\mathrm{a}}^{+} + \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-} (aq)\) $$K_{a3} = \dfrac{[\mathrm{H}_{3} \mathrm{O}_{\mathrm{aq}}^+][\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-}]}{[\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}]}$$

Step by step solution

01

Identify acidic protons

Citric acid has three acidic protons in its structure. These protons are attached to oxygen atoms in the carboxylic acid (COOH) functional groups, and can dissociate in water to form a hydronium ion (H₃O⁺) and corresponding citrate ion.
02

First dissociation reaction

The first dissociation reaction involves one acidic proton being removed from the citric acid molecule, forming the hydrogen di-citrate ion. The balanced chemical equation for the first dissociation reaction is: $$ \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \left( \mathrm{aq} \right) + \mathrm{H}_{2} \mathrm{O} \left( \mathrm{l} \right) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}_{\mathrm{a}} + \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-} \left( \mathrm{aq} \right) $$
03

First Ka expression

The acid dissociation constant (Ka) expression for the first dissociation step is: $$ K_{a1} = \dfrac{[\mathrm{H}_{3} \mathrm{O}_{\mathrm{aq}}][\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}]}{[\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}]} $$
04

Second dissociation reaction

The second dissociation reaction involves another acidic proton being removed, this time from the hydrogen di-citrate ion, forming the dihydrogen citrate ion. The balanced chemical equation for the second dissociation reaction is: $$ \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-} \left( \mathrm{aq} \right) + \mathrm{H}_{2} \mathrm{O} \left( \mathrm{l} \right) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}_{\mathrm{a}^{+}} + \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-} \left( \mathrm{aq} \right) $$
05

Second Ka expression

The acid dissociation constant (Ka) expression for the second dissociation step is: $$ K_{a2} = \dfrac{[\mathrm{H}_{3} \mathrm{O}_{\mathrm{aq}}^+][\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}]}{[\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}]} $$
06

Third dissociation reaction

The third and final dissociation reaction involves the last acidic proton being removed, from the dihydrogen citrate ion, forming the tricitrate ion. The balanced chemical equation for the third dissociation reaction is: $$ \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-} \left( \mathrm{aq} \right) + \mathrm{H}_{2} \mathrm{O} \left( \mathrm{l} \right) \longleftrightarrow \mathrm{H}_{3} \mathrm{O}_{\mathrm{a}}^{+} + \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-} \left( \mathrm{aq} \right) $$
07

Third Ka expression

The acid dissociation constant (Ka) expression for the third dissociation step is: $$ K_{a3} = \dfrac{[\mathrm{H}_{3} \mathrm{O}_{\mathrm{aq}}^+][\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-}]}{[\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}]} $$ These are the final stepwise dissociation reactions and Ka expressions for citric acid.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A certain acid, HA, has a vapor density of \(5.11 \mathrm{~g} / \mathrm{L}\) when in the gas phase at a temperature of \(25^{\circ} \mathrm{C}\) and a pressure of \(1.00 \mathrm{~atm}\). When \(1.50 \mathrm{~g}\) of this acid is dissolved in enough water to make \(100.0 \mathrm{~mL}\) of solution, the \(\mathrm{pH}\) is found to be \(1.80\). Calculate \(K_{\mathrm{a}}\) for the acid.

Acrylic acid \(\left(\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{H}\right)\) is a precursor for many important plastics. \(K_{\mathrm{a}}\) for acrylic acid is \(5.6 \times 10^{-5}\). a. Calculate the \(\mathrm{pH}\) of a \(0.10 \mathrm{M}\) solution of acrylic acid. b. Calculate the percent dissociation of a \(0.10 \mathrm{M}\) solution of acrylic acid. c. Calculate the \(\mathrm{pH}\) of a \(0.050 \mathrm{M}\) solution of sodium acrylate \(\left(\mathrm{NaC}_{3} \mathrm{H}_{3} \mathrm{O}_{2}\right)\)

Which of the following represent conjugate acid-base pairs? For those pairs that are not conjugates, write the correct conjugate acid or base for each species in the pair. a. \(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}\) c. \(\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}\) b. \(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{4}^{2-}\) d. \(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\)

Calculate the \(\mathrm{pH}\) of a \(0.10 \mathrm{M} \mathrm{CoCl}_{3}\) solution. The \(K_{\mathrm{a}}\) value for \(\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\) is \(1.0 \times 10^{-5}\).

A \(10.0\) -mL sample of an \(\mathrm{HCl}\) solution has a \(\mathrm{pH}\) of \(2.000\). What volume of water must be added to change the \(\mathrm{pH}\) to \(4.000\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free