Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write expressions for \(K_{\mathrm{p}}\) for the following reactions. a. \(2 \mathrm{Fe}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\) b. \(\mathrm{CO}_{2}(g)+\mathrm{MgO}(s) \rightleftharpoons \mathrm{MgCO}_{3}(s)\) c. \(\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2}(g)\) d. \(4 \mathrm{KO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{KOH}(s)+3 \mathrm{O}_{2}(g)\)

Short Answer

Expert verified
The expressions for \(K_p\) for the given reactions are as follows: a. \(K_{p} = \frac{1}{[\mathrm{O}_{2}]^{\frac{3}{2}}}\) b. \(K_{p} = \frac{1}{[\mathrm{CO}_{2}]}\) c. \(K_{p} = \frac{[\mathrm{CO}][\mathrm{H}_{2}]}{[\mathrm{H}_{2}\mathrm{O}]}\) d. \(K_{p} = \frac{[\mathrm{O}_{2}]^3}{[\mathrm{H}_{2}\mathrm{O}]^2}\)

Step by step solution

01

Reaction a

\(2 \mathrm{Fe}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\) For reaction a, we have the following equilibrium: \(2 \mathrm{Fe}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\) Since the Kp expression includes only the partial pressures of gases, we will not include Fe(s) and Fe₂O₃(s) in the expression. Thus, the expression for Kp for reaction a is: \(K_{p} = \frac{1}{[\mathrm{O}_{2}]^{\frac{3}{2}}}\)
02

Reaction b

\(\mathrm{CO}_{2}(g)+\mathrm{MgO}(s) \rightleftharpoons \mathrm{MgCO}_{3}(s)\) For reaction b, we have the following equilibrium: \(\mathrm{CO}_{2}(g)+\mathrm{MgO}(s) \rightleftharpoons \mathrm{MgCO}_{3}(s)\) Since the Kp expression includes only the partial pressures of gases, we will not include MgO(s) and MgCO₃(s) in the expression. Thus, the expression for Kp for reaction b is: \(K_{p} = \frac{1}{[\mathrm{CO}_{2}]}\)
03

Reaction c

\(\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2}(g)\) For reaction c, we have the following equilibrium: \(\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2}(g)\) Since the Kp expression includes only the partial pressures of gases, we will not include C(s) in the expression. Thus, the expression for Kp for reaction c is: \(K_{p} = \frac{[\mathrm{CO}][\mathrm{H}_{2}]}{[\mathrm{H}_{2}\mathrm{O}]}\)
04

Reaction d

\(4 \mathrm{KO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{KOH}(s)+3 \mathrm{O}_{2}(g)\) For reaction d, we have the following equilibrium: \(4 \mathrm{KO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 4 \mathrm{KOH}(s)+3 \mathrm{O}_{2}(g)\) Since the Kp expression includes only the partial pressures of gases, we will not include KO₂(s) and KOH(s) in the expression. Thus, the expression for Kp for reaction d is: \(K_{p} = \frac{[\mathrm{O}_{2}]^3}{[\mathrm{H}_{2}\mathrm{O}]^2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At a particular temperature, \(K=3.75\) for the reaction $$ \mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{NO}(g) $$ If all four gases had initial concentrations of \(0.800 M\), calculate the equilibrium concentrations of the gases.

At a particular temperature, a 3.0-L flask contains \(2.4 \mathrm{~mol} \mathrm{Cl}_{2}\), \(1.0 \mathrm{~mol} \mathrm{NOCl}\), and \(4.5 \times 10^{-3} \mathrm{~mol}\) NO. Calculate \(K\) at this temperature for the following reaction: $$ 2 \mathrm{NOCl}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) $$

For the reaction $$ 2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) $$ \(K=2.4 \times 10^{-3}\) at a given temperature. At equilibrium it is found that \(\left[\mathrm{H}_{2} \mathrm{O}(g)\right]=1.1 \times 10^{-1} M\) and \(\left[\mathrm{H}_{2}(g)\right]=1.9 \times 10^{-2} M\) What is the concentration of \(\mathrm{O}_{2}(g)\) under these conditions?

Given \(K=3.50\) at \(45^{\circ} \mathrm{C}\) for the reaction $$ \mathrm{A}(g)+\mathrm{B}(g) \rightleftharpoons \mathrm{C}(g) $$ and \(K=7.10\) at \(45^{\circ} \mathrm{C}\) for the reaction $$ 2 \mathrm{~A}(g)+\mathrm{D}(g) \rightleftharpoons \mathrm{C}(g) $$ what is the value of \(K\) at the same temperature for the reaction $$ \mathrm{C}(g)+\mathrm{D}(g) \rightleftharpoons 2 \mathrm{~B}(g) $$ What is the value of \(K_{\mathrm{p}}\) at \(45^{\circ} \mathrm{C}\) for the reaction? Starting with \(1.50\) atm partial pressures of both \(\mathrm{C}\) and \(\mathrm{D}\), what is the mole fraction of \(\mathrm{B}\) once equilibrium is reached?

The equilibrium constant is \(0.0900\) at \(25^{\circ} \mathrm{C}\) for the reaction $$ \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Cl}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HOCl}(g) $$ For which of the following sets of conditions is the system at equilibrium? For those which are not at equilibrium, in which direction will the system shift? a. A \(1.0\) - \(\mathrm{L}\) flask contains \(1.0 \mathrm{~mol} \mathrm{HOCl}, 0.10 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}\), and \(0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\) b. A 2.0-L flask contains \(0.084 \mathrm{~mol} \mathrm{HOCl}, 0.080 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}\), and \(0.98 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\) c. A 3.0-L flask contains \(0.25 \mathrm{~mol} \mathrm{HOCl}, 0.0010 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}\), and \(0.56 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free