Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The following equilibrium pressures at a certain temperature were observed for the reaction $$ \begin{aligned} 2 \mathrm{NO}_{2}(g) & \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \\\ P_{\mathrm{NO}_{2}} &=0.55 \mathrm{~atm} \\ P_{\mathrm{NO}} &=6.5 \times 10^{-5} \mathrm{~atm} \\ P_{\mathrm{O}_{2}} &=4.5 \times 10^{-5} \mathrm{~atm} \end{aligned} $$ Calculate the value for the equilibrium constant \(K_{\mathrm{p}}\) at this temperature.

Short Answer

Expert verified
The equilibrium constant, \(K_p\), for the reaction at this temperature is \(9.06 \times 10^{-11}\).

Step by step solution

01

Write the balanced equilibrium reaction

In this problem, we're already given a balanced reaction: \[ 2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g) \]
02

Write the expression for the equilibrium constant \(K_p\)

Using the balanced chemical equation, write the expression for the equilibrium constant \(K_p\) in terms of the partial pressures of each species: \[K_p = \frac{(P_{NO})^2 \cdot (P_{O_2})}{(P_{NO_2})^2}\]
03

Substitute the given partial pressures into the \(K_p\) expression

We're given the following partial pressures: \(P_{NO_2} = 0.55~atm\), \(P_{NO} = 6.5 \times 10^{-5}~atm\), and \(P_{O_2} = 4.5 \times 10^{-5}~atm\) Substitute these values into the \(K_p\) expression: \[K_p = \frac{(6.5 \times 10^{-5})^2 \cdot (4.5 \times 10^{-5})}{(0.55)^2}\]
04

Calculate the value of \(K_p\)

Perform the calculation in the previous step to find the value of \(K_p\): \[K_p = \frac{(6.5 \times 10^{-5})^2 \cdot (4.5 \times 10^{-5})}{(0.55)^2} = 9.06 \times 10^{-11}\] So, the equilibrium constant, \(K_p\), at this temperature is \(9.06 \times 10^{-11}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following equilibrium pressures were observed at a certain temperature for the reaction $$ \begin{array}{c} \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \\\ P_{\mathrm{NH}_{3}}=3.1 \times 10^{-2} \mathrm{~atm} \\ P_{\mathrm{N}_{2}}=8.5 \times 10^{-1} \mathrm{~atm} \\ P_{\mathrm{H}_{2}}=3.1 \times 10^{-3} \mathrm{~atm} \end{array} $$ Calculate the value for the equilibrium constant \(K_{\mathrm{p}}\) at this temperature. If \(P_{\mathrm{N}_{2}}=0.525 \mathrm{~atm}, P_{\mathrm{NH}_{3}}=0.0167 \mathrm{~atm}\), and \(P_{\mathrm{H}_{2}}=0.00761\) atm, does this represent a system at equilibrium?

Write expressions for \(K\) and \(K_{\mathrm{p}}\) for the following reactions. a. \(2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{CH}_{4} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g)\) b. \(2 \mathrm{NBr}_{3}(s) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{Br}_{2}(g)\) c. \(2 \mathrm{KClO}_{3}(s) \rightleftharpoons 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)\) d. \(\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{Cu}(l)+\mathrm{H}_{2} \mathrm{O}(g)\)

At \(25^{\circ} \mathrm{C}\), gaseous \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) decomposes to \(\mathrm{SO}_{2}(g)\) and \(\mathrm{Cl}_{2}(g)\) to the extent that \(12.5 \%\) of the original \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) (by moles) has decomposed to reach equilibrium. The total pressure (at equilibrium) is \(0.900\) atm. Calculate the value of \(K_{\mathrm{p}}\) for this system.

A sample of gaseous nitrosyl bromide (NOBr) was placed in a container fitted with a frictionless, massless piston, where it decomposed at \(25^{\circ} \mathrm{C}\) according to the following equation: $$ 2 \mathrm{NOBr}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) $$ The initial density of the system was recorded as \(4.495 \mathrm{~g} / \mathrm{L}\). After equilibrium was reached, the density was noted to be \(4.086 \mathrm{~g} / \mathrm{L}\). a. Determine the value of the equilibrium constant \(K\) for the reaction. b. If \(\operatorname{Ar}(g)\) is added to the system at equilibrium at constant temperature, what will happen to the equilibrium position? What happens to the value of \(K ?\) Explain each answer.

Consider the following reactions. \(\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \longrightarrow 2 \mathrm{HI}(g)\) and \(\mathrm{H}_{2}(g)+\mathrm{I}_{2}(s) \longrightarrow 2 \mathrm{HI}(g)\) List two property differences between these two reactions that relate to equilibrium.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free