Chapter 12: Problem 6
For the reaction \(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}\), explain at least two ways in which the rate law could be zero order in chemical A.
Chapter 12: Problem 6
For the reaction \(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}\), explain at least two ways in which the rate law could be zero order in chemical A.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the hypothetical reaction $$ \mathrm{A}+\mathrm{B}+2 \mathrm{C} \longrightarrow 2 \mathrm{D}+3 \mathrm{E} $$ where the rate law is $$ \text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}][\mathrm{B}]^{2} $$ An experiment is carried out where \([\mathrm{A}]_{0}=1.0 \times 10^{-2} M\), \([\mathrm{B}]_{0}=3.0 \mathrm{M}\), and \([\mathrm{C}]_{0}=2.0 \mathrm{M} .\) The reaction is started, and after \(8.0\) seconds, the concentration of \(\mathrm{A}\) is \(3.8 \times 10^{-3} \mathrm{M}\). a. Calculate the value of \(k\) for this reaction. b. Calculate the half-life for this experiment. c. Calculate the concentration of A after \(13.0\) seconds. d. Calculate the concentration of \(\mathrm{C}\) after \(13.0\) seconds.
In the Haber process for the production of ammonia, $$ \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) $$ what is the relationship between the rate of production of ammonia and the rate of consumption of hydrogen?
Assuming that the mechanism for the hydrogenation of \(\mathrm{C}_{2} \mathrm{H}_{4}\) given in Section \(12.7\) is correct, would you predict that the product of the reaction of \(\mathrm{C}_{2} \mathrm{H}_{4}\) with \(\mathrm{D}_{2}\) would be \(\mathrm{CH}_{2} \mathrm{D}-\mathrm{CH}_{2} \mathrm{D}\) or \(\mathrm{CHD}_{2}-\mathrm{CH}_{3} ?\) How could the reaction of \(\mathrm{C}_{2} \mathrm{H}_{4}\) with \(\mathrm{D}_{2}\) be used to confirm the mechanism for the hydrogenation of \(\mathrm{C}_{2} \mathrm{H}_{4}\) given in Section \(12.7\) ?
The rate constant \((k)\) depends on which of the following (there may be more than one answer)? a. the concentration of the reactants b. the nature of the reactants c. the temperature d. the order of the reaction Explain.
The activation energy for the reaction $$ \mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g) $$ is \(125 \mathrm{~kJ} / \mathrm{mol}\), and \(\Delta E\) for the reaction is \(-216 \mathrm{~kJ} / \mathrm{mol}\). What is the activation energy for the reverse reaction \(\left[\mathrm{NO}(g)+\mathrm{CO}_{2}(g) \longrightarrow\right.\) \(\left.\mathrm{NO}_{2}(g)+\mathrm{CO}(g)\right] ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.