Chapter 12: Problem 2
Describe at least two experiments you could perform to determine a rate law.
Chapter 12: Problem 2
Describe at least two experiments you could perform to determine a rate law.
All the tools & learning materials you need for study success - in one app.
Get started for freeOne reason suggested for the instability of long chains of silicon atoms is that the decomposition involves the transition state shown below: The activation energy for such a process is \(210 \mathrm{~kJ} / \mathrm{mol}\), which is less than either the \(\mathrm{Si}-\mathrm{Si}\) or the \(\mathrm{Si}-\mathrm{H}\) bond energy. Why would a similar mechanism not be expected to play a very important role in the decomposition of long chains of carbon atoms as seen in organic compounds?
The decomposition of hydrogen iodide on finely divided gold at \(150^{\circ} \mathrm{C}\) is zero order with respect to HI. The rate defined below is constant at \(1.20 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}\) $$ \begin{array}{r} 2 \mathrm{HI}(g) \stackrel{\mathrm{Au}}{\longrightarrow} \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \\ \text { Rate }=-\frac{\Delta[\mathrm{HI}]}{\Delta t}=k=1.20 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s} \end{array} $$ a. If the initial HI concentration was \(0.250 \mathrm{~mol} / \mathrm{L}\), calculate the concentration of HI at 25 minutes after the start of the reaction. b. How long will it take for all of the \(0.250 M\) HI to decompose?
How does temperature affect k, the rate constant? Explain.
A first-order reaction has rate constants of \(4.6 \times 10^{-2} \mathrm{~s}^{-1}\) and \(8.1 \times 10^{-2} \mathrm{~s}^{-1}\) at \(0^{\circ} \mathrm{C}\) and \(20 .{ }^{\circ} \mathrm{C}\), respectively. What is the value of the activation energy?
Consider the reaction $$ 3 \mathrm{~A}+\mathrm{B}+\mathrm{C} \longrightarrow \mathrm{D}+\mathrm{E} $$ where the rate law is defined as $$ -\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2}[\mathrm{~B}][\mathrm{C}] $$ An experiment is carried out where \([\mathrm{B}]_{0}=[\mathrm{C}]_{0}=1.00 \mathrm{M}\) and \([\mathrm{A}]_{0}=1.00 \times 10^{-4} M\) a. If after \(3.00 \mathrm{~min},[\mathrm{~A}]=3.26 \times 10^{-5} M\), calculate the value of \(k\). b. Calculate the half-life for this experiment. c. Calculate the concentration of \(\mathrm{B}\) and the concentration of \(\mathrm{A}\) after \(10.0 \mathrm{~min}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.