Chapter 12: Problem 11
Define what is meant by unimolecular and bimolecular steps. Why are termolecular steps infrequently seen in chemical reactions?
Chapter 12: Problem 11
Define what is meant by unimolecular and bimolecular steps. Why are termolecular steps infrequently seen in chemical reactions?
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the rate laws for the following elementary reactions. a. \(\mathrm{CH}_{3} \mathrm{NC}(g) \rightarrow \mathrm{CH}_{3} \mathrm{CN}(g)\) b. \(\mathrm{O}_{3}(g)+\mathrm{NO}(g) \rightarrow \mathrm{O}_{2}(g)+\mathrm{NO}_{2}(g)\) c. \(\mathrm{O}_{3}(g) \rightarrow \mathrm{O}_{2}(g)+\mathrm{O}(g)\) d. \(\mathrm{O}_{3}(g)+\mathrm{O}(g) \rightarrow 2 \mathrm{O}_{2}(g)\)
The decomposition of \(\mathrm{NO}_{2}(g)\) occurs by the following bimolecular elementary reaction: $$ 2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) $$ The rate constant at \(273 \mathrm{~K}\) is \(2.3 \times 10^{-12} \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}\), and the activation energy is \(111 \mathrm{~kJ} / \mathrm{mol}\). How long will it take for the concentration of \(\mathrm{NO}_{2}(g)\) to decrease from an initial partial pressure of \(2.5\) atm to \(1.5\) atm at \(500 . \mathrm{K}\) ? Assume ideal gas behavior.
Consider a reaction of the type \(\mathrm{aA} \longrightarrow\) products, in which the rate law is found to be rate \(=k[\mathrm{~A}]^{3}\) (termolecular reactions are improbable but possible). If the first half-life of the reaction is found to be \(40 . \mathrm{s}\), what is the time for the second half-life? Hint: Using your calculus knowledge, derive the integrated rate law from the differential rate law for a termolecular reaction: $$ \text { Rate }=\frac{-d[\mathrm{~A}]}{d t}=k[\mathrm{~A}]^{3} $$
In the Haber process for the production of ammonia, $$ \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) $$ what is the relationship between the rate of production of ammonia and the rate of consumption of hydrogen?
Provide a conceptual rationale for the differences in the half-lives of zero-, first-, and second-order reactions.
What do you think about this solution?
We value your feedback to improve our textbook solutions.