Chapter 11: Problem 27
Explain the terms isotonic solution, crenation, and hemolysis.
Chapter 11: Problem 27
Explain the terms isotonic solution, crenation, and hemolysis.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe high melting points of ionic solids indicate that a lot of energy must be supplied to separate the ions from one another. How is it possible that the ions can separate from one another when soluble ionic compounds are dissolved in water, often with essentially no temperature change?
The solubility of nitrogen in water is \(8.21 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\) at \(0^{\circ} \mathrm{C}\) when the \(\mathrm{N}_{2}\) pressure above water is \(0.790 \mathrm{~atm} .\) Calculate the Henry's law constant for \(\mathrm{N}_{2}\) in units of \(\mathrm{mol} / \mathrm{L} \cdot\) atm for Henry's law in the form \(C=k P\), where \(C\) is the gas concentration in mol/L. Calculate the solubility of \(\mathrm{N}_{2}\) in water when the partial pressure of nitrogen above water is \(1.10 \mathrm{~atm}\) at \(0{ }^{\circ} \mathrm{C}\).
A solid mixture contains \(\mathrm{MgCl}_{2}\) and \(\mathrm{NaCl}\). When \(0.5000 \mathrm{~g}\) of this solid is dissolved in enough water to form \(1.000 \mathrm{~L}\) of solution, the osmotic pressure at \(25.0^{\circ} \mathrm{C}\) is observed to be \(0.3950 \mathrm{~atm}\). What is the mass percent of \(\mathrm{MgCl}_{2}\) in the solid? (Assume ideal behavior for the solution.)
In order for sodium chloride to dissolve in water, a small amount of energy must be added during solution formation. This is not energetically favorable. Why is \(\mathrm{NaCl}\) so soluble in water?
Which solvent, water or carbon tetrachloride, would you choose to dissolve each of the following? a. \(\mathrm{KrF}_{2}\) e. \(\mathrm{MgF}_{2}\) b. \(\mathrm{SF}_{2}\) f. \(\mathrm{CH}_{2} \mathrm{O}\) c. \(\mathrm{SO}_{2}\) g. \(\mathrm{CH}_{2}=\mathrm{CH}_{2}\) d. \(\mathrm{CO}_{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.