Chapter 11: Problem 21
When pure methanol is mixed with water, the resulting solution feels warm. Would you expect this solution to be ideal? Explain.
Chapter 11: Problem 21
When pure methanol is mixed with water, the resulting solution feels warm. Would you expect this solution to be ideal? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freePlants that thrive in salt water must have internal solutions (inside the plant cells) that are isotonic with (have the same osmotic pressure as) the surrounding solution. A leaf of a saltwater plant is able to thrive in an aqueous salt solution (at \(\left.25^{\circ} \mathrm{C}\right)\) that has a freezing point equal to \(-0.621^{\circ} \mathrm{C}\). You would like to use this information to calculate the osmotic pressure of the solution in the cell. a. In order to use the freezing-point depression to calculate osmotic pressure, what assumption must you make (in addition to ideal behavior of the solutions, which we will assume)? b. Under what conditions is the assumption (in part a) reasonable? c. Solve for the osmotic pressure (at \(25^{\circ} \mathrm{C}\) ) of the solution in the plant cell. d. The plant leaf is placed in an aqueous salt solution (at \(\left.25^{\circ} \mathrm{C}\right)\) that has a boiling point of \(102.0^{\circ} \mathrm{C}\). What will happen to the plant cells in the leaf?
A \(1.37 M\) solution of citric acid \(\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)\) in water has a density of \(1.10 \mathrm{~g} / \mathrm{cm}^{3} .\) Calculate the mass percent, molality, mole fraction, and normality of the citric acid. Citric acid has three acidic protons.
Anthraquinone contains only carbon, hydrogen, and oxygen. When \(4.80 \mathrm{mg}\) anthraquinone is burned, \(14.2 \mathrm{mg} \mathrm{CO}_{2}\) and \(1.65 \mathrm{mg} \mathrm{H}_{2} \mathrm{O}\) are produced. The freezing point of camphor is lowered by \(22.3^{\circ} \mathrm{C}\) when \(1.32 \mathrm{~g}\) anthraquinone is dissolved in \(11.4 \mathrm{~g}\) camphor. Determine the empirical and molecular formulas of anthraquinone.
Which of the following will have the lowest total vapor pressure at \(25^{\circ} \mathrm{C} ?\) a. pure water (vapor pressure \(=23.8\) torr at \(25^{\circ} \mathrm{C}\) ) b. a solution of glucose in water with \(\chi_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=0.01\) c. a solution of sodium chloride in water with \(\chi_{\mathrm{NaCl}}=0.01\) d. a solution of methanol in water with \(\chi_{\mathrm{CH}_{3} \mathrm{OH}}=0.2\) (Consider the vapor pressure of both methanol \(\left[143\right.\) torr at \(\left.25^{\circ} \mathrm{C}\right]\) and water.)
A solution is prepared by mixing \(50.0 \mathrm{~mL}\) toluene \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3},\right.\), \(\left.d=0.867 \mathrm{~g} / \mathrm{cm}^{3}\right)\) with \(125 \mathrm{~mL}\) benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}, d=0.874 \mathrm{~g} / \mathrm{cm}^{3}\right)\) Assuming that the volumes add on mixing, calculate the mass percent, mole fraction, molality, and molarity of the toluene.
What do you think about this solution?
We value your feedback to improve our textbook solutions.