Chapter 11: Problem 11
Rubbing alcohol contains 585 g isopropanol \(\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)\) per liter (aqueous solution). Calculate the molarity.
Chapter 11: Problem 11
Rubbing alcohol contains 585 g isopropanol \(\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)\) per liter (aqueous solution). Calculate the molarity.
All the tools & learning materials you need for study success - in one app.
Get started for freeHow would you prepare \(1.0 \mathrm{~L}\) of an aqueous solution of sodium chloride having an osmotic pressure of \(15 \mathrm{~atm}\) at \(22^{\circ} \mathrm{C} ?\) Assume sodium chloride exists as \(\mathrm{Na}^{+}\) and \(\mathrm{Cl}^{-}\) ions in solution.
Erythrocytes are red blood cells containing hemoglobin. In a saline solution they shrivel when the salt concentration is high and swell when the salt concentration is low. In a \(25^{\circ} \mathrm{C}\) aqueous solution of \(\mathrm{NaCl}\), whose freezing point is \(-0.406^{\circ} \mathrm{C}\), erythrocytes neither swell nor shrink. If we want to calculate the osmotic pressure of the solution inside the erythrocytes under these conditions, what do we need to assume? Why? Estimate how good (or poor) of an assumption this is. Make this assumption and calculate the osmotic pressure of the solution inside the erythrocytes.
How would you prepare \(1.0 \mathrm{~L}\) of an aqueous solution of sucrose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\) having an osmotic pressure of \(15 \mathrm{~atm}\) at a temperature of \(22^{\circ} \mathrm{C} ?\) Sucrose is a nonelectrolyte.
A solution is prepared by mixing \(25 \mathrm{~mL}\) pentane \(\left(\mathrm{C}_{5} \mathrm{H}_{12}, d=\right.\) \(\left.0.63 \mathrm{~g} / \mathrm{cm}^{3}\right)\) with \(45 \mathrm{~mL}\) hexane \(\left(\mathrm{C}_{6} \mathrm{H}_{14}, d=0.66 \mathrm{~g} / \mathrm{cm}^{3}\right)\). Assuming that the volumes add on mixing, calculate the mass percent, mole fraction, molality, and molarity of the pentane.
A \(0.500-\mathrm{g}\) sample of a compound is dissolved in enough water to form \(100.0 \mathrm{~mL}\) of solution. This solution has an osmotic pressure of \(2.50\) atm at \(25^{\circ} \mathrm{C}\). If each molecule of the solute disso- ciates into two particles (in this solvent), what is the molar mass of this solute?
What do you think about this solution?
We value your feedback to improve our textbook solutions.