Chapter 10: Problem 66
An aluminum antimonide solid-state laser emits light with a wavelength of \(730 . \mathrm{nm}\). Calculate the band gap in joules.
Chapter 10: Problem 66
An aluminum antimonide solid-state laser emits light with a wavelength of \(730 . \mathrm{nm}\). Calculate the band gap in joules.
All the tools & learning materials you need for study success - in one app.
Get started for freeOne method of preparing elemental mercury involves roasting cinnabar (HgS) in quicklime \((\mathrm{CaO})\) at \(600 .{ }^{\circ} \mathrm{C}\) followed by condensation of the mercury vapor. Given the heat of vaporization of mercury \((296 \mathrm{~J} / \mathrm{g})\) and the vapor pressure of mercury at \(25.0^{\circ} \mathrm{C}\) \(\left(2.56 \times 10^{-3}\right.\) torr), what is the vapor pressure of the condensed mercury at \(300 .{ }^{\circ} \mathrm{C} ?\) How many atoms of mercury are present in the mercury vapor at \(300 .{ }^{\circ} \mathrm{C}\) if the reaction is conducted in a closed 15.0-L container?
A substance, \(X\), has the following properties: Sketch a heating curve for substance \(\mathrm{X}\) starting at \(-50 .{ }^{\circ} \mathrm{C}\).
A metallic solid with atoms in a face-centered cubic unit cell with an edge length of \(392 \mathrm{pm}\) has a density of \(21.45 \mathrm{~g} / \mathrm{cm}^{3}\). Calculate the atomic mass and the atomic radius of the metal. Identify the metal.
The \(\mathrm{CsCl}\) structure is a simple cubic array of chloride ions with a cesium ion at the center of each cubic array (see Exercise 67 ). Given that the density of cesium chloride is \(3.97 \mathrm{~g} / \mathrm{cm}^{3}\), and assuming that the chloride and cesium ions touch along the body diagonal of the cubic unit cell, calculate the distance between the centers of adjacent \(\mathrm{Cs}^{+}\) and \(\mathrm{Cl}^{-}\) ions in the solid. Compare this value with the expected distance based on the sizes of the ions. The ionic radius of \(\mathrm{Cs}^{+}\) is \(169 \mathrm{pm}\), and the ionic radius of \(\mathrm{Cl}^{-}\) is \(181 \mathrm{pm}\).
Some ionic compounds contain a mixture of different charged cations. For example, some titanium oxides contain a mixture of \(\mathrm{Ti}^{2+}\) and \(\mathrm{Ti}^{3+}\) ions. Consider a certain oxide of titanium that is \(28.31 \%\) oxygen by mass and contains a mixture of \(\mathrm{Ti}^{2+}\) and \(\mathrm{Ti}^{3+}\) ions. Determine the formula of the compound and the relative numbers of \(\mathrm{Ti}^{2+}\) and \(\mathrm{Ti}^{3+}\) ions.
What do you think about this solution?
We value your feedback to improve our textbook solutions.