Chapter 10: Problem 58
The radius of tungsten is \(137 \mathrm{pm}\) and the density is \(19.3 \mathrm{~g} / \mathrm{cm}^{3}\). Does elemental tungsten have a face-centered cubic structure or a body-centered cubic structure?
Chapter 10: Problem 58
The radius of tungsten is \(137 \mathrm{pm}\) and the density is \(19.3 \mathrm{~g} / \mathrm{cm}^{3}\). Does elemental tungsten have a face-centered cubic structure or a body-centered cubic structure?
All the tools & learning materials you need for study success - in one app.
Get started for freeMn crystallizes in the same type of cubic unit cell as Cu. Assuming that the radius of \(\mathrm{Mn}\) is \(5.6 \%\) larger than the radius of \(\mathrm{Cu}\) and the density of copper is \(8.96 \mathrm{~g} / \mathrm{cm}^{3}\), calculate the density of \(\mathrm{Mn}\).
Some ionic compounds contain a mixture of different charged cations. For example, some titanium oxides contain a mixture of \(\mathrm{Ti}^{2+}\) and \(\mathrm{Ti}^{3+}\) ions. Consider a certain oxide of titanium that is \(28.31 \%\) oxygen by mass and contains a mixture of \(\mathrm{Ti}^{2+}\) and \(\mathrm{Ti}^{3+}\) ions. Determine the formula of the compound and the relative numbers of \(\mathrm{Ti}^{2+}\) and \(\mathrm{Ti}^{3+}\) ions.
Hydrogen bonding is a special case of very strong dipole-dipole interactions possible among only certain atoms. What atoms in addition to hydrogen are necessary for hydrogen bonding? How does the small size of the hydrogen atom contribute to the unusual strength of the dipole-dipole forces involved in hydrogen bonding?
A certain metal fluoride crystallizes in such a way that the fluoride ions occupy simple cubic lattice sites, while the metal ions occupy the body centers of half the cubes. What is the formula of the metal fluoride?
In each of the following groups of substances, pick the one that has the given property. Justify each answer. a. highest boiling point: \(\mathrm{CCl}_{4}, \mathrm{CF}_{4}, \mathrm{CBr}_{4}\) b. lowest freezing point: \(\mathrm{LiF}, \mathrm{F}_{2}, \mathrm{HCl}\) c. smallest vapor pressure at \(25^{\circ} \mathrm{C}: \mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\) d. greatest viscosity: \(\mathrm{H}_{2} \mathrm{~S}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}_{2}\) e. greatest heat of vaporization: \(\mathrm{H}_{2} \mathrm{CO}, \mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{CH}_{4}\) f. smallest enthalpy of fusion: \(\mathrm{I}_{2}, \mathrm{CsBr}, \mathrm{CaO}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.