Chapter 10: Problem 4
Is it possible for the dispersion forces in a particular substance to be stronger than the hydrogen bonding forces in another substance? Explain your answer.
Chapter 10: Problem 4
Is it possible for the dispersion forces in a particular substance to be stronger than the hydrogen bonding forces in another substance? Explain your answer.
All the tools & learning materials you need for study success - in one app.
Get started for freeNickel has a face-centered cubic unit cell. The density of nickel is \(6.84 \mathrm{~g} / \mathrm{cm}^{3}\). Calculate a value for the atomic radius of nickel.
In each of the following groups of substances, pick the one that has the given
property. Justify your answer.
a. highest boiling point: \(\mathrm{HBr}, \mathrm{Kr}\), or \(\mathrm{Cl}_{2}\)
b. highest freezing point: \(\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}\), or HF
c. lowest vapor pressure at \(25^{\circ} \mathrm{C}: \mathrm{Cl}_{2},
\mathrm{Br}_{2}\), or \(\mathrm{I}_{2}\)
d. lowest freezing point: \(\mathrm{N}_{2}, \mathrm{CO}\), or \(\mathrm{CO}_{2}\)
e. lowest boiling point: \(\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{CH}_{3}\),
or \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\)
f. highest boiling point: HF, HCl, or HBr
Barium has a body-centered cubic structure. If the atomic radius of barium is \(222 \mathrm{pm}\), calculate the density of solid barium.
The molar heat of fusion of sodium metal is \(2.60 \mathrm{~kJ} / \mathrm{mol}\), whereas its heat of vaporization is \(97.0 \mathrm{~kJ} / \mathrm{mol}\). a. Why is the heat of vaporization so much larger than the heat of fusion? b. What quantity of heat would be needed to melt \(1.00 \mathrm{~g}\) sodium at its normal melting point? c. What quantity of heat would be needed to vaporize \(1.00 \mathrm{~g}\) sodium at its normal boiling point? d. What quantity of heat would be evolved if \(1.00 \mathrm{~g}\) sodium vapor condensed at its normal boiling point?
Identify the most important types of interparticle forces present in the solids of each of the following substances. a. \(\mathrm{BaSO}_{4}\) e. CsI b. \(\mathrm{H}_{2} \mathrm{~S}\) f. \(\mathrm{P}_{4}\) c. Xe g. \(\mathrm{NH}_{3}\) d. \(\mathrm{C}_{2} \mathrm{H}_{6}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.